
Dynamic Minimum Length Polygon

J.-O. Lachaud, X. Provençal

Laboratoire de Mathématiques
Université de Savoie

3 mars 2015

1 / 20

Minimum Length Polygon

←− C

←− IC(C)

←− OC(C)

←− OC(C) \ IC(C)◦

1 Proved to be convergent on convex shapes.
2 If aligned vertices are considered.

2 / 20

Minimum Length Polygon

←− C

←− IC(C)

←− OC(C)

←− OC(C) \ IC(C)◦

1 Proved to be convergent on convex shapes.
2 If aligned vertices are considered.

2 / 20

Minimum Length Polygon

←− C

←− IC(C)

←− OC(C)

←− OC(C) \ IC(C)◦

1 Proved to be convergent on convex shapes.
2 If aligned vertices are considered.

2 / 20

Minimum Length Polygon

←− C

←− IC(C)

←− OC(C)

←− OC(C) \ IC(C)◦

1 Proved to be convergent on convex shapes.
2 If aligned vertices are considered.

2 / 20

Minimum Length Polygon

←− C

←− IC(C)

←− OC(C)

←− OC(C) \ IC(C)◦

Definition

Given a digital contour C , its inner (resp. outer) contour IC(C)
(resp. OC(C)) is the erosion (resp. dilatation) of the body of I (C)
by the open unit square centrer on (0, 0).

1 Proved to be convergent on convex shapes.
2 If aligned vertices are considered.

2 / 20

Minimum Length Polygon

←− C

←− IC(C)

←− OC(C)

←− OC(C) \ IC(C)◦

Definition

Given a digital contour C , its inner (resp. outer) contour IC(C)
(resp. OC(C)) is the erosion (resp. dilatation) of the body of I (C)
by the open unit square centrer on (0, 0).

1 Proved to be convergent on convex shapes.
2 If aligned vertices are considered.

2 / 20

Minimum Length Polygon

←− C

←− IC(C)

←− OC(C)

←− OC(C) \ IC(C)◦

Definition

Given a digital contour C , its inner (resp. outer) contour IC(C)
(resp. OC(C)) is the erosion (resp. dilatation) of the body of I (C)
by the open unit square centrer on (0, 0).

1 Proved to be convergent on convex shapes.
2 If aligned vertices are considered.

2 / 20

Minimum Length Polygon

←− C

←− IC(C)

←− OC(C)

←− OC(C) \ IC(C)◦

Definition

The minimum length polygon of C is a subset P ∈ R2 such that,

P = arg min
A∈A, IC(C)⊆A, ∂A⊂OC(C)\IC(C)◦

Per(A)

where A is the family of simply connected compact sets of R2.

1 Proved to be convergent on convex shapes.
2 If aligned vertices are considered.

2 / 20

Minimum Length Polygon

←− C

←− IC(C)

←− OC(C)

←− OC(C) \ IC(C)◦

The MLP is a polygonal line whose vertices are centers of pixels
along the inner or the outer contour, also :

unique ;
a good length estimator1 ;
a good tangent estimator ;
characteristic of the shape’s convexity ;
reversible2.

1 Proved to be convergent on convex shapes.
2 If aligned vertices are considered.

2 / 20

Minimum Length Polygon

←− C

←− IC(C)

←− OC(C)

←− OC(C) \ IC(C)◦

The MLP is a polygonal line whose vertices are centers of pixels
along the inner or the outer contour, also :

unique ;

a good length estimator1 ;
a good tangent estimator ;
characteristic of the shape’s convexity ;
reversible2.

1 Proved to be convergent on convex shapes.
2 If aligned vertices are considered.

2 / 20

Minimum Length Polygon

←− C

←− IC(C)

←− OC(C)

←− OC(C) \ IC(C)◦

The MLP is a polygonal line whose vertices are centers of pixels
along the inner or the outer contour, also :

unique ;
a good length estimator1 ;

a good tangent estimator ;
characteristic of the shape’s convexity ;
reversible2.

1 Proved to be convergent on convex shapes.

2 If aligned vertices are considered.

2 / 20

Minimum Length Polygon

←− C

←− IC(C)

←− OC(C)

←− OC(C) \ IC(C)◦

The MLP is a polygonal line whose vertices are centers of pixels
along the inner or the outer contour, also :

unique ;
a good length estimator1 ;
a good tangent estimator ;

characteristic of the shape’s convexity ;
reversible2.

1 Proved to be convergent on convex shapes.

2 If aligned vertices are considered.

2 / 20

Minimum Length Polygon

←− C

←− IC(C)

←− OC(C)

←− OC(C) \ IC(C)◦

The MLP is a polygonal line whose vertices are centers of pixels
along the inner or the outer contour, also :

unique ;
a good length estimator1 ;
a good tangent estimator ;
characteristic of the shape’s convexity ;

reversible2.

1 Proved to be convergent on convex shapes.

2 If aligned vertices are considered.

2 / 20

Minimum Length Polygon

←− C

←− IC(C)

←− OC(C)

←− OC(C) \ IC(C)◦

The MLP is a polygonal line whose vertices are centers of pixels
along the inner or the outer contour, also :

unique ;
a good length estimator1 ;
a good tangent estimator ;
characteristic of the shape’s convexity ;
reversible2.

1 Proved to be convergent on convex shapes.
2 If aligned vertices are considered.

2 / 20

Computation of MLP

MLP is computable in time linear with respect of the length of C .

J.-O. Lachaud, X. Provençal, Two linear-time algorithms for
computing the minimum length polygon of a digital contour,
Discrete Applied Mathematics (DAM), 2011.

3 / 20

Segmentation using deformable models

F. de Vieilleville and J.-O. Lachaud, Digital Deformable Model
Simulating Active Contours, in proc. DGCI2009, LNCS 5810,
p.203-216, 2009.

4 / 20

Segmentation using deformable models

G. Damiand, A. Dupas and J.-O. Lachaud, Combining
Topological Maps, Multi-Label Simple Points, and
Minimum-Length Polygons for Efficient Digital Partition
Model, in proc. IWCIA2011, LNCS 6636, p. 208-221, 2011.

5 / 20

Flip a pixel

6 / 20

Flip a pixel

6 / 20

Flip a pixel

6 / 20

Flip a pixel

6 / 20

Reversible polygonal representation

Goal : represent a digital contour C using a polygon whose versices are
centers of pixels either on the inner contour IC(C) or on the outer
contour OC(C).

Definition

A grid-vector is a triplet x = ((p, q), k, δ) ∈ N2 × N× B. where

gcd(p, q) = 1, q/p is the slope of x (with 1/0 =∞),

k ≥ 1 is its number of repetitions

the boolean δ indicates if x has one endpoint on the inner contour
and one on the outer.

Notation : ((p, q), k, δ) =


(p, q)k if δ is false,

(̃p, q)k otherwise.

7 / 20

Reversible polygonal representation

Goal : represent a digital contour C using a polygon whose versices are
centers of pixels either on the inner contour IC(C) or on the outer
contour OC(C).

Definition

A grid-vector is a triplet x = ((p, q), k , δ) ∈ N2 × N× B. where

gcd(p, q) = 1, q/p is the slope of x (with 1/0 =∞),

k ≥ 1 is its number of repetitions

the boolean δ indicates if x has one endpoint on the inner contour
and one on the outer.

Notation : ((p, q), k , δ) =


(p, q)k if δ is false,

(̃p, q)k otherwise.

7 / 20

Reversible polygonal representation

Geometric interpretation of grid-vectors.

Definition

A context is an ordered pair of letters (a, b) among
{(0, 1), (1, 2), (2, 3), (3, 0), (0, 3), (3, 2), (2, 1), (1, 0)}.

Given a context (a, b), a grid-vectors defines the following vector
as follow :

(a,b)−−−−→
(p, q)k = k(p

−→
a + q

−→
b),

(a,b)−−−−→
(̃p, q)k = k(p

−→
b + q

−→
a).

2 0

3

1

(3, 2)1 (̃2, 3)1 (̃3, 2)1 (3, 2)1

Illustration of grid-segments using the letters (0, 1).

8 / 20

Reversible polygonal representation

Geometric interpretation of grid-vectors.

Definition

A context is an ordered pair of letters (a, b) among
{(0, 1), (1, 2), (2, 3), (3, 0), (0, 3), (3, 2), (2, 1), (1, 0)}.

Given a context (a, b), a grid-vectors defines the following vector
as follow :

(a,b)−−−−→
(p, q)k = k(p

−→
a + q

−→
b),

(a,b)−−−−→
(̃p, q)k = k(p

−→
b + q

−→
a).

2 0

3

1

(3, 2)1 (̃2, 3)1 (̃3, 2)1 (3, 2)1

Illustration of grid-segments using the letters (0, 1).

8 / 20

Reversible polygonal representation

Operators :
σ+(a, b) = (b, a) : a turn toward the interior,
σ−(a, b) = (b, a) : a turn toward the exterior,

with the convention 0 = 2, 1 = 3, 2 = 0, 3 = 1.

Grid-curve : Γ = [l0, l1, . . . , ln−1] where each li is either a
grid-vector or one of the operators σ−, σ+.

2 0

3

1

[(2, 3)︸ ︷︷ ︸
(0, 1)

, σ+︸︷︷︸
(0, 1)
↓

(3, 0)

, (2, 3)︸ ︷︷ ︸
(3, 0)

] [(2, 3)︸ ︷︷ ︸
(0, 1)

, σ−︸︷︷︸
(0, 1)
↓

(1, 2)

, (2, 3)︸ ︷︷ ︸
(1, 2)

]

9 / 20

Reversible polygonal representation

Notations :
(a,b)−→
σ− =

(a,b)−→
σ+ = (0, 0).

Let x = ((p, q), k , δ), x(a, b) =


(b, a) if δ is true,

(a, b) otherwise.

From grid-curves to polygons.
A grid-curve Γ = [l0, l1, . . . , ln−1], a context (a0, b0) and a start
point P0 define a polygonal curve PΓ = [P0,P1, . . . ,Pn] in the
following way :

Pi+1 = Pi +

(ai ,bi)−→
li and (ai+1, bi+1) = li (ai , bi).

By fixing the first point on the inside or outside polygon, a discrete
contour is defined unambiguously.

10 / 20

Reversible polygonal representation

Notations :
(a,b)−→
σ− =

(a,b)−→
σ+ = (0, 0).

Let x = ((p, q), k , δ), x(a, b) =


(b, a) if δ is true,

(a, b) otherwise.

[(2, 3), (3, 1), (̃1, 1), (2, 3), (3, 1)]

From grid-curves to polygons.
A grid-curve Γ = [l0, l1, . . . , ln−1], a context (a0, b0) and a start
point P0 define a polygonal curve PΓ = [P0,P1, . . . ,Pn] in the
following way :

Pi+1 = Pi +

(ai ,bi)−→
li and (ai+1, bi+1) = li (ai , bi).

By fixing the first point on the inside or outside polygon, a discrete
contour is defined unambiguously.

10 / 20

Reversible polygonal representation

Notations :
(a,b)−→
σ− =

(a,b)−→
σ+ = (0, 0).

Let x = ((p, q), k , δ), x(a, b) =


(b, a) if δ is true,

(a, b) otherwise.

[(2, 3), (3, 1), (̃1, 1), (2, 3), (3, 1)]

From grid-curves to polygons.
A grid-curve Γ = [l0, l1, . . . , ln−1], a context (a0, b0) and a start
point P0 define a polygonal curve PΓ = [P0,P1, . . . ,Pn] in the
following way :

Pi+1 = Pi +

(ai ,bi)−→
li and (ai+1, bi+1) = li (ai , bi).

By fixing the first point on the inside or outside polygon, a discrete
contour is defined unambiguously.

10 / 20

Reversible polygonal representation

Notations :
(a,b)−→
σ− =

(a,b)−→
σ+ = (0, 0).

Let x = ((p, q), k , δ), x(a, b) =


(b, a) if δ is true,

(a, b) otherwise.

From grid-curves to polygons.
A grid-curve Γ = [l0, l1, . . . , ln−1], a context (a0, b0) and a start
point P0 define a polygonal curve PΓ = [P0,P1, . . . ,Pn] in the
following way :

Pi+1 = Pi +

(ai ,bi)−→
li and (ai+1, bi+1) = li (ai , bi).

By fixing the first point on the inside or outside polygon, a discrete
contour is defined unambiguously.

10 / 20

Not unique

[(2, 3), σ+, (2, 3)] [(1, 1), (̃3, 1), σ−, (̃2, 1), (1, 2)]

Definition

Two grid-curves Γ and Γ′ are equivalent, if they define the same
digital contour and ends in the same orientation.

The MLP of the digital contour C is the shortest grid-curve in the
equivalence class defined by C .

11 / 20

Not unique

[(2, 3), σ+, (2, 3)] [(1, 1), (̃3, 1), σ−, (̃2, 1), (1, 2)]

Definition

Two grid-curves Γ and Γ′ are equivalent, if they define the same
digital contour and ends in the same orientation.

The MLP of the digital contour C is the shortest grid-curve in the
equivalence class defined by C .

11 / 20

Relative orientation of grid-segements

Notation

Given x = ((p, q), k, δx) and y = ((r , s), l , δy),

x ⊗ y =

{
ps − qr if δy is false,
pr − qs if δy is true.

Three cases

x ⊗ y = 0 x ⊗ y < 0 x ⊗ y > 0

[(3, 2), (3, 2)]

[(3, 2), (3, 2)] [(2, 3), (2, 1)] [(̃1, 3), (̃2, 3)] [(3, 1), (2, 3)] [(̃3, 2), (̃2, 1)]

12 / 20

Relative orientation of grid-segements

Notation

Given x = ((p, q), k, δx) and y = ((r , s), l , δy),

x ⊗ y =

{
ps − qr if δy is false,
pr − qs if δy is true.

Three cases

x ⊗ y = 0 x ⊗ y < 0 x ⊗ y > 0

[(3, 2), (3, 2)]

[(3, 2)2] [(2, 3), (2, 1)] [(̃1, 3), (̃2, 3)] [(3, 1), (2, 3)] [(̃3, 2), (̃2, 1)]

12 / 20

Merge case : x ⊗ y = 1

Let x = ((p, q), k, δx) and y = ((r , s), l , δy) with

x ⊗ y = 1,
δy = false and min(k, l) = 1

or
δy = true and l = 1

then

[x , y] ≡ [z] where z =

{
((kp + lr , kq + ls), 1, δx) if δy = false.
((kp + ls, kq + lr), 1,¬δx) otherwise.

[(2, 1)2, (1, 1)] [(2, 1), (1, 1)2] [(1, 1)2, (̃2, 1)] [(̃2, 1)2, (1, 1)]
l l l l

[(5, 3)] [(4, 3)] [(̃4, 3)] [(̃5, 3)]

13 / 20

Split and merge case : x ⊗ y > 1

(8, 3)⊗ (2, 1)3 = 2.

[(8, 3), (2, 1)3]

14 / 20

Split and merge case : x ⊗ y > 1

(8, 3)⊗ (2, 1)3 = 2.

[(8, 3), (2, 1)3] ≡ [(̃2, 5), (̃3, 1), (2, 1)3]

14 / 20

Split and merge case : x ⊗ y > 1

(8, 3)⊗ (2, 1)3 = 2.

[(8, 3), (2, 1)3] ≡ [(̃2, 5), (1, 2), (̃1, 0), (2, 1)3]

14 / 20

Split and merge case : x ⊗ y > 1

(8, 3)⊗ (2, 1)3 = 2.

[(8, 3), (2, 1)3] ≡ [(̃2, 5), (1, 2), (̃1, 0), (2, 1), (2, 1)2]

14 / 20

Split and merge case : x ⊗ y > 1

(8, 3)⊗ (2, 1)3 = 2.

[(8, 3), (2, 1)3] ≡ [(̃2, 5), (1, 2), (̃1, 0), (̃1, 1), (̃1, 0), (2, 1)2]

14 / 20

Split and merge case : x ⊗ y > 1

(8, 3)⊗ (2, 1)3 = 2.

[(8, 3), (2, 1)3] ≡ [(̃2, 5), (1, 2), (̃1, 0), (̃1, 0), (0, 1), (̃1, 0), (2, 1)2]

14 / 20

Split and merge case : x ⊗ y > 1

(8, 3)⊗ (2, 1)3 = 2.

[(8, 3), (2, 1)3] ≡ [(̃2, 5), (1, 2), (1, 1)(0, 1), (̃5, 2)]

14 / 20

Split and merge case : x ⊗ y > 1

(8, 3)⊗ (2, 1)3 = 2.

[(8, 3), (2, 1)3] ≡ [(̃2, 5), (1, 2)2, (̃5, 2)]

14 / 20

Split and merge case : x ⊗ y > 1

(8, 3)⊗ (2, 1)3 = 2.

[(8, 3), (2, 1)3] ≡ [(̃2, 5), (̃9, 4)]

14 / 20

How to split ?

Notation

Let x = ((p, q), 1, false) and q/p = [u0; u1, . . . , un].

qi/pi = [u0; u1, . . . , ui],

xi = ((pi , qi), 1, false),

x−1 = ((0, 1), 1, false),

x−2 = ((1, 0), 1, false).

Definition

The basic splitting of the grid-vector xn is the grid-curve :

s(xn) =


[x2m−2, x

u2m
2m−1] if n = 2m,

[x
u2m+1
2m , x2m−1] if n = 2m+1,

A grid-vector and it’s basic splittings both define the same interpixel path.

s(x) = [y , z] =⇒ y ⊗ z = 1.

15 / 20

How to split ?
0

1

1

0

1

1

2

1

1

3

1

2

2

3

3

2

3

1

2

5

3

5

3

4

5

2

4

1

5

3

4

3

1

4

5

7

5/7 = [0; 1, 2, 2],

2/3 = [0; 1, 2],

1/1 = [0; 1]

[(7, 5)] ≡ [(3, 2)2, (1, 1)]

≡ [(̃1, 1), (2, 3), (̃3, 2)]

16 / 20

How to split ?
0

1

1

0

1

1

2

1

1

3

1

2

2

3

3

2

3

1

2

5

3

5

3

4

5

2

4

1

5

3

4

3

1

4

5

7

5/7 = [0; 1, 2, 2],

2/3 = [0; 1, 2],

1/1 = [0; 1]

[(7, 5)] ≡ [(3, 2)2, (1, 1)]

≡ [(̃1, 1), (2, 3), (̃3, 2)]

16 / 20

How to split ?
0

1

1

0

1

1

2

1

1

3

1

2

2

3

3

2

3

1

2

5

3

5

3

4

5

2

4

1

5

3

4

3

1

4

5

7

5/7 = [0; 1, 2, 2],

2/3 = [0; 1, 2],

1/1 = [0; 1]

[(7, 5)] ≡ [(3, 2)2, (1, 1)]

≡ [(̃1, 1), (2, 3), (̃3, 2)]

16 / 20

How to split ?
0

1

1

0

1

1

2

1

1

3

1

2

2

3

3

2

3

1

2

5

3

5

3

4

5

2

4

1

5

3

4

3

1

4

5

7

5/7 = [0; 1, 2, 2],

2/3 = [0; 1, 2],

1/1 = [0; 1]

[(7, 5)] ≡ [(3, 2)2, (1, 1)] ≡ [(̃1, 1), (2, 3), (̃3, 2)]

16 / 20

Flip a pixel

[(̃3, 8), (̃2, 1)3]

≡ [(̃1, 2), (1, 3), (1, 3), (̃2, 1)3]

6≡ [(̃1, 2), (̃3, 1), (̃1, 3), (̃2, 1)3] ≡ [(5, 2), (̃1, 3), (̃2, 1)3]

1 Split grid-segments until one ends exactly on the pixel to flip. Let
x = ((p, q), 1, δx) be the grid segment right before and y = ((r , s), 1, δy)
be the grid-vector right after.

2 Replace x by ((q, p), 1,¬δx).

3 Replace y by ((r , s), 1,¬δy).

17 / 20

Flip a pixel

[(̃3, 8), (̃2, 1)3] ≡ [(̃1, 2), (1, 3), (1, 3), (̃2, 1)3]

6≡ [(̃1, 2), (̃3, 1), (̃1, 3), (̃2, 1)3] ≡ [(5, 2), (̃1, 3), (̃2, 1)3]

1 Split grid-segments until one ends exactly on the pixel to flip. Let
x = ((p, q), 1, δx) be the grid segment right before and y = ((r , s), 1, δy)
be the grid-vector right after.

2 Replace x by ((q, p), 1,¬δx).

3 Replace y by ((r , s), 1,¬δy).

17 / 20

Flip a pixel

[(̃3, 8), (̃2, 1)3] ≡ [(̃1, 2), (1, 3), (1, 3), (̃2, 1)3]

6≡ [(̃1, 2), (̃3, 1), (̃1, 3), (̃2, 1)3]

≡ [(5, 2), (̃1, 3), (̃2, 1)3]

1 Split grid-segments until one ends exactly on the pixel to flip. Let
x = ((p, q), 1, δx) be the grid segment right before and y = ((r , s), 1, δy)
be the grid-vector right after.

2 Replace x by ((q, p), 1,¬δx).

3 Replace y by ((r , s), 1,¬δy).
17 / 20

Flip a pixel

[(̃3, 8), (̃2, 1)3] ≡ [(̃1, 2), (1, 3), (1, 3), (̃2, 1)3]

6≡ [(̃1, 2), (̃3, 1), (̃1, 3), (̃2, 1)3] ≡ [(5, 2), (̃1, 3), (̃2, 1)3]

1 Split grid-segments until one ends exactly on the pixel to flip. Let
x = ((p, q), 1, δx) be the grid segment right before and y = ((r , s), 1, δy)
be the grid-vector right after.

2 Replace x by ((q, p), 1,¬δx).

3 Replace y by ((r , s), 1,¬δy).
17 / 20

Flip a pixel

[(̃3, 8), (̃2, 1)3] ≡ [(̃1, 2), (1, 3), (1, 3), (̃2, 1)3]

6≡ [(̃1, 2), (̃3, 1), (̃1, 3), (̃2, 1)3] ≡ [(5, 2), (̃1, 3), (̃2, 1)3]

1 Split grid-segments until one ends exactly on the pixel to flip. Let
x = ((p, q), 1, δx) be the grid segment right before and y = ((r , s), 1, δy)
be the grid-vector right after.

2 Replace x by ((q, p), 1,¬δx).

3 Replace y by ((r , s), 1,¬δy).
17 / 20

Flip a pixel on a flat part

[(2, 1), (1, 0)6, σ+, (1, 2)]

How to simplify σ− ?

Cancellation : [σ−, σ+] ≡ [σ+, σ−] ≡ []

Split the grid-edges in order to have a local part build only with

{σ+, σ−, (1, 0), (0, 1), (̃1, 0), (̃0, 1)}. Operators σ− are then simplify using
local rules such as :

[(1, 0), σ−, (1, 0), σ+] ≡ [(1, 1)] and [σ−, (1, 0)k , σ+] ≡ [(0, 1)k]

18 / 20

Flip a pixel on a flat part

[(2, 1), (1, 0)3, (1, 0)3, σ+, (1, 2)]

How to simplify σ− ?

Cancellation : [σ−, σ+] ≡ [σ+, σ−] ≡ []

Split the grid-edges in order to have a local part build only with

{σ+, σ−, (1, 0), (0, 1), (̃1, 0), (̃0, 1)}. Operators σ− are then simplify using
local rules such as :

[(1, 0), σ−, (1, 0), σ+] ≡ [(1, 1)] and [σ−, (1, 0)k , σ+] ≡ [(0, 1)k]

18 / 20

Flip a pixel on a flat part

[(2, 1), (1, 0)2, (̃0, 1), (̃1, 0)3, σ+, (1, 2)]

How to simplify σ− ?

Cancellation : [σ−, σ+] ≡ [σ+, σ−] ≡ []

Split the grid-edges in order to have a local part build only with

{σ+, σ−, (1, 0), (0, 1), (̃1, 0), (̃0, 1)}. Operators σ− are then simplify using
local rules such as :

[(1, 0), σ−, (1, 0), σ+] ≡ [(1, 1)] and [σ−, (1, 0)k , σ+] ≡ [(0, 1)k]

18 / 20

Flip a pixel on a flat part

[(2, 1), (1, 0)3, (1, 0)3, σ+, (1, 2)]

How to simplify σ− ?

Cancellation : [σ−, σ+] ≡ [σ+, σ−] ≡ []

Split the grid-edges in order to have a local part build only with

{σ+, σ−, (1, 0), (0, 1), (̃1, 0), (̃0, 1)}. Operators σ− are then simplify using
local rules such as :

[(1, 0), σ−, (1, 0), σ+] ≡ [(1, 1)] and [σ−, (1, 0)k , σ+] ≡ [(0, 1)k]

18 / 20

Flip a pixel on a flat part

[(2, 1), (1, 0)3, σ−, (1, 0), σ+, σ+, (1, 0), σ−︸ ︷︷ ︸
bumb

, (1, 0)3, σ+, (1, 2)]

How to simplify σ− ?

Cancellation : [σ−, σ+] ≡ [σ+, σ−] ≡ []

Split the grid-edges in order to have a local part build only with

{σ+, σ−, (1, 0), (0, 1), (̃1, 0), (̃0, 1)}. Operators σ− are then simplify using
local rules such as :

[(1, 0), σ−, (1, 0), σ+] ≡ [(1, 1)] and [σ−, (1, 0)k , σ+] ≡ [(0, 1)k]

18 / 20

Flip a pixel on a flat part

[(2, 1), (1, 0)3, σ−, (1, 0), σ+, σ+, (1, 0), σ−︸ ︷︷ ︸
bumb

, (1, 0)3, σ+, (1, 2)]

How to simplify σ− ?

Cancellation : [σ−, σ+] ≡ [σ+, σ−] ≡ []

Split the grid-edges in order to have a local part build only with

{σ+, σ−, (1, 0), (0, 1), (̃1, 0), (̃0, 1)}. Operators σ− are then simplify using
local rules such as :

[(1, 0), σ−, (1, 0), σ+] ≡ [(1, 1)] and [σ−, (1, 0)k , σ+] ≡ [(0, 1)k]

18 / 20

Flip a pixel on a flat part

[(2, 1), (1, 0)3, σ−, (1, 0), σ+, σ+, (1, 0), σ−︸ ︷︷ ︸
bumb

, (1, 0)3, σ+, (1, 2)]

How to simplify σ− ?

Cancellation : [σ−, σ+] ≡ [σ+, σ−] ≡ []

Split the grid-edges in order to have a local part build only with

{σ+, σ−, (1, 0), (0, 1), (̃1, 0), (̃0, 1)}. Operators σ− are then simplify using
local rules such as :

[(1, 0), σ−, (1, 0), σ+] ≡ [(1, 1)] and [σ−, (1, 0)k , σ+] ≡ [(0, 1)k]

18 / 20

Flip a pixel on a flat part

[(2, 1), (1, 0)3, σ−, (1, 0), σ+, σ+, (1, 0), σ−︸ ︷︷ ︸
bumb

, (1, 0)3, σ+, (1, 2)]

How to simplify σ− ?

Cancellation : [σ−, σ+] ≡ [σ+, σ−] ≡ []

Split the grid-edges in order to have a local part build only with

{σ+, σ−, (1, 0), (0, 1), (̃1, 0), (̃0, 1)}. Operators σ− are then simplify using
local rules such as :

[(1, 0), σ−, (1, 0), σ+] ≡ [(1, 1)] and [σ−, (1, 0)k , σ+] ≡ [(0, 1)k]

18 / 20

Main result

Proposition

A grid-curve defining a digital contour may be simplified to a MLP
using local rules.

Proposition

Given a grid-curve that is the MLP of a digital contour, this
contour may be modified by adding or removing one pixel and its
MLP updated in time sub-linear with respect to the length of the
modified part of the MLP.

Implemente in project ImaGene available at
gforge.liris.cnrs.fr/projects/imagene

19 / 20

Main result

Proposition

A grid-curve defining a digital contour may be simplified to a MLP
using local rules.

Proposition

Given a grid-curve that is the MLP of a digital contour, this
contour may be modified by adding or removing one pixel and its
MLP updated in time sub-linear with respect to the length of the
modified part of the MLP.

Implemente in project ImaGene available at
gforge.liris.cnrs.fr/projects/imagene

19 / 20

C’est fini. . .

MERCI !

20 / 20

