Dynamic Minimum Length Polygon

J.-O. Lachaud, X. Provencal

LAMA

Laboratoire de Mathématiques
Université de Savoie

3 mars 2015

/20

Minimum Length Polygon

Minimum Length Polygon

Minimum Length Polygon

[

Minimum Length Polygon

)

20

Minimum Length Polygon

—— Kk— OC(C)
__Ir —lL
| 1
o - 10(0)
L
_lL
-
o et €
=
11 |
L A
=
L_I '_J
L_I '__l
L_I ,_J

Definition

Given a digital contour C, its inner (resp. outer) contour IC(C)
(resp. OC(C)) is the erosion (resp. dilatation) of the body of /(C)
by the open unit square centrer on (0, 0).

)

20

Minimum Length Polygon

=== 0C(0)
IC(C)

Definition

Given a digital contour C, its inner (resp. outer) contour IC(C)
(resp. OC(C)) is the erosion (resp. dilatation) of the body of /(C)
by the open unit square centrer on (0, 0).

)

20

Minimum Length Polygon

0C(C)

Definition

Given a digital contour C, its inner (resp. outer) contour IC(C)
(resp. OC(C)) is the erosion (resp. dilatation) of the body of /(C)
by the open unit square centrer on (0, 0).

)

20

Minimum Length Polygon

0C(C)\ IC(C)°

Definition

The minimum length polygon of C is a subset P € R? such that,
P = arg min Per(A)
A€ A, IC(C)CA, DACOC(C)\IC(C)°

where A is the family of simply connected compact sets of R

)

20

Minimum Length Polygon

N

The MLP is a polygonal line whose vertices are centers of pixels
along the inner or the outer contour, also :

)

20

Minimum Length Polygon

N

The MLP is a polygonal line whose vertices are centers of pixels
along the inner or the outer contour, also :
@ unique;

)

20

Minimum Length Polygon

N

The MLP is a polygonal line whose vertices are centers of pixels
along the inner or the outer contour, also :

@ unique;

@ a good length estimator? ;

1 Proved to be convergent on convex shapes.

)

20

Minimum Length Polygon

N

The MLP is a polygonal line whose vertices are centers of pixels
along the inner or the outer contour, also :

@ unique;

@ a good length estimator? ;

@ a good tangent estimator;

1 Proved to be convergent on convex shapes.

)

20

Minimum Length Polygon

N

The MLP is a polygonal line whose vertices are centers of pixels
along the inner or the outer contour, also :

@ unique;

@ a good length estimator? ;

@ a good tangent estimator;

@ characteristic of the shape's convexity ;

1 Proved to be convergent on convex shapes.

)

20

Minimum Length Polygon

N

The MLP is a polygonal line whose vertices are centers of pixels
along the inner or the outer contour, also :

@ unique;

@ a good length estimator? ;

@ a good tangent estimator;

@ characteristic of the shape's convexity ;

o reversible?.

1 Proved to be convergent on convex shapes.
2f aligned vertices are considered.

N

20

Computation of MLP

MLP is computable in time linear with respect of the length of C.

@ J.-O. Lachaud, X. Provencal, Two linear-time algorithms for
computing the minimum length polygon of a digital contour,
Discrete Applied Mathematics (DAM), 2011.

Segmentation using deformable models

—— |~
——

——
e

Fig. 4. Example of the minimization process using the Greedy1 algorithm. The gradie

od with the Canny-Deriche method with scale coefficient 0.2. The input im:
a half-plane. (First row) Ir ation of the DDM. (Second row) Results
the minimisation process, the a coefficient used is equal to 0. (Third row) Results with
@ = 200. (Fifth row) Results with a = 300.

e F. de Vieilleville and J.-O. Lachaud, Digital Deformable Model
Simulating Active Contours, in proc. DGCI2009, LNCS 5810,
p.203-216, 2009.

4/20

Segmentation using deformable models

<
= 13

—
N1

e G. Damiand, A. Dupas and J.-O. Lachaud, Combining
Topological Maps, Multi-Label Simple Points, and
Minimum-Length Polygons for Efficient Digital Partition
Model, in proc. IWCIA2011, LNCS 6636, p. 208-221, 2011.

Flip a pixel

Flip a pixel

Flip a pixel

Flip a pixel

Reversible polygonal representation

Goal : represent a digital contour C using a polygon whose versices are
centers of pixels either on the inner contour IC(C) or on the outer

contour OC(C).

Reversible polygonal representation

Goal : represent a digital contour C using a polygon whose versices are
centers of pixels either on the inner contour IC(C) or on the outer

contour OC(C).

Definition

A grid-vector is a triplet x = ((p, q), k,) € N> x N x B. where
@ gcd(p,q) =1, g/p is the slope of x (with 1/0 = c0),
@ k > 1 is its number of repetitions

@ the boolean ¢ indicates if x has one endpoint on the inner contour
and one on the outer.

(p, q)k if 6 is false,
Notation : ((p, q), k,9) =

—_~—

(p, g)¥ otherwise.

Reversible polygonal representation

Geometric interpretation of grid-vectors.

Definition

A context is an ordered pair of letters (a, b) among
{(0,1),(1,2),(2,3),(3,0),(0,3), (3,2), (2, 1), (1,0)}.

Given a context (a, b), a grid-vectors defines the following vector

as follow :
h—t(a’b) — — 1
(p,q)* = k(pa +aqb), (_1_)
2 0
(a,b)
e — — 3
(p,@)k = k(pb+gqa).

Reversible polygonal representation

Geometric interpretation of grid-vectors.

Definition
A context is an ordered pair of letters (a, b) among
{(0,1),(1,2),(2,3),(3,0),(0,3), (3,2), (2, 1), (1,0)}.

Given a context (a, b), a grid-vectors defines the following vector
as follow :

- =
k(pa +qb),

A
B
Q
2
I

- =
k(pb +qa).

(p@) =

Reversible polygonal representation

o Oberators - ot (a,b) = (b, a) : a turn toward the interior,
P ' _(b) = (b,3) : a turn toward the exterior,
with the convention 0 =2,1=3,2=0,3 = 1.
e Grid-curve : T = [lo, h,...,In—1] where each /; is either a
+

grid-vector or one of the operators 0~ , 0.

1
2o
2,3), ot (2,3 2,3), o~ ,(2,3
[(2,3), o ,(2,3)] [(2,3), o ,(2,3)]
(0,1) (Oil) (3,0) (0,1) (011) (1,2)
(3,0) (1,2)

Reversible polygonal representation

Notations :
(a_7b>) (a_»b>)
e 07 =07 =(0,0)

(b, a) if d is true,

(a, b) otherwise.

o Let x=((p,q), k,6), x(a,b)= {

10/20

Reversible polygonal representation

Notations :
7b ?b
(a_>) (a_>)

e 0~ =07 =(0,0).
(b, a) if § is true,

o Let x=((p,q), k,6), x(a,b) = {

(a, b) otherwise.

[(2,3),(3,1),(1,1),(2,3), (3, 1)]

10/20

Reversible polygonal representation

Notations :
(a_J;) (a,b)

(b, a) if § is true,

(a, b) otherwise.

[(2,3),(3,1),(1,1),(2,3), (3, 1)]

10/20

Reversible polygonal representation

Notations :
(a_7b>) (a_»b>)
e 0~ =0t =(0,0).

(b, a) if d is true,
o Let x =((p,q),k,9), x(a,b)=
(a, b) otherwise.

From grid-curves to polygons.
A grid-curve ' = [lo, h, ..., In—1], a context (ap, bp) and a start
point Py define a polygonal curve Pr = [Py, Py, ..., Py] in the
following way :

(ai,bi)

%
Piy1=Pi+ [and (ajy1, biy1) = li(a;, bi).

By fixing the first point on the inside or outside polygon, a discrete

contour is defined unambiguously.
10/20

11/20

[(2,3),07,(2,3)]

Definition

Two grid-curves I and I’ are equivalent, if they define the same
digital contour and ends in the same orientation.

The MLP of the digital contour C is the shortest grid-curve in the
equivalence class defined by C.

11/20

Relative orientation of grid-segements

Given x = ((p, q), k,9x) and y = ((r,s),1,6y),
| ps—gqr ifd, is false,
X®y_{pr—qs if §, is true.

Three cases
x@y=0 x®y <0 x®y>0

x|

[(3,2),(3.2)] | [(2,3),2 1] [(1.3),(23)] | [(31).(23)] [(3.2),(2.1)]

12/20

Relative orientation of grid-segements

Given x = ((p, q), k,9x) and y = ((r,s),1,6y),
| ps—gqr ifd, is false,
X®y_{pr—qs if §, is true.

Three cases
x@y=0 x®y <0 x®y>0

x|

(3,27 | (23,21 [(1,3),23)]] [31).(23)] [(3.2),21)]

12/20

Merge case : x®@ y =1

Let x = ((p, q), k, 6x) and y = ((r,s), !, d,) with
0y = false and min(k,/) =1
x®y=1, or
6, =trueand /=1

then
((kp + Ir, kg + Is), 1, 6x) if §, = false.

[x,y] = [z] where z = { ((kp + Is, kq + Ir),1,-38,) otherwise.

—~—

[(2,1)% (1,1)] [(2,1),$(1,1)2] [(171)1,(271)]

13 /20

Split and merge case : x @ y > 1

(8,3)®(2,1)3 =2,

14 /20

Split and merge case : x @ y > 1

(8,3)®(2,1)3 =2,

14 /20

Split and merge case : x @ y > 1

(8,3)®(2,1)3 =2,

14 /20

Split and merge case : x @ y > 1

(8,3)® (2,13 =2.

[(8.3).(2,1)*] = [(2,5).(1,2),(1,0),(2,1),(2,1)?]

14 /20

Split and merge case : x @ y > 1

(8,3)®(2,1)3 =2,

14 /20

Split and merge case : x @ y > 1

(8,3)®(2,1)3 =2,

14 /20

Split and merge case : x @ y > 1

(8,3)®(2,1)3 =2,

14 /20

Split and merge case : x @ y > 1

(8,3)®(2,1)3 =2,

14 /20

Split and merge case : x @ y > 1

(8,3)®(2,1)3 =2,

14 /20

How to split ?

Let x = ((p, q),1,false) and q/p = [uo; u1,- - ., Un].

e qgi/pi = [uo; u1,...,u], @ x-1=((0,1),1,false),
o x; = ((pi,qi),1,false), @ x_o=((1,0),1,false).

4

The basic splitting of the grid-vector x, is the grid-curve :
[em—2, %2m 1] if n = 2m,
s(xn) =

2™t xom_1] if n = 2m+1,

\

A grid-vector and it's basic splittings both define the same interpixel path.

s(x)=[y,z] = y®z=1

15/20

How to split ?

16 /20

How to split ?

16 /20

How to split ?

5/7 =[0;1,2,2],
2/3=10;1,2],
1/1=1[0;1]

[(7.5)] =[(3,2)*, (1, 1)]

16 /20

How to split ?

5/7=1[0;1,2,2],
2/3=10;1,2],
1/1=1[0;1]

[(7,5)] = [(3,2)%, (1, 1)] = [(1,1),(2,3), (3,2)]

16 /20

Flip a pixel

17 /20

Flip a pixel

[(3,8), (2, 1)°] = [(1,2), (1,3), (1,3), (2, 1)°]

@ Split grid-segments until one ends exactly on the pixel to flip. Let
x = ((p, q),1,0x) be the grid segment right before and y = ((r,s),1,4,)
be the grid-vector right after.

17 /20

Flip a pixel

[(3,8), (2, 1)°] = [(1,2), (1,3), (1,3), (2, 1)°]

Y~~~ ——

#1(1,2),(3.1),(1,3), (2, 1)7]

@ Split grid-segments until one ends exactly on the pixel to flip. Let
x = ((p, q),1,0x) be the grid segment right before and y = ((r,s),1,4,)
be the grid-vector right after.

@ Replace x by ((q, p), 1, 7dx).

@ Replace y by ((r,s),1,-d,).

17 /20

Flip a pixel

[(3,8), (2, 1)°] = [(1,2), (1,3), (1,3), (2, 1)°]

Y~~~ ——

#1(1,2),(3.1),(1,3), (2, 1)°] = [(5,2), (1,3), (2, 1)?]

@ Split grid-segments until one ends exactly on the pixel to flip. Let
x = ((p, q),1,0x) be the grid segment right before and y = ((r,s),1,4,)
be the grid-vector right after.

@ Replace x by ((q, p), 1, 70x).

@ Replace y by ((r,s),1,-6,).

17 /20

Flip a pixel

[(3,8), (2, 1)°] = [(1,2), (1,3), (1,3), (2, 1)°]

Y~~~ ——

#1(1,2),(3.1),(1,3), (2, 1)°] = [(5,2), (1,3), (2, 1)?]

@ Split grid-segments until one ends exactly on the pixel to flip. Let
x = ((p, q),1,0x) be the grid segment right before and y = ((r,s),1,4,)
be the grid-vector right after.

@ Replace x by ((q, p), 1, 70x).

@ Replace y by ((r,s),1,-6,).

17 /20

Flip a pixel on a flat part

[(2.1),(1,0)°,07,(1,2)]

18 /20

Flip a pixel on a flat part

[(2,1),(1,0)°,(1,0)% 0, (1,2)]

18 /20

Flip a pixel on a flat part

18 /20

Flip a pixel on a flat part

[(2,1),(1,0)°,(1,0)% 0, (1,2)]

18 /20

Flip a pixel on a flat part

==
[(2,1),(1,00°, o7,(1,0),0%,0%,(1,0),07, (1,0)% 0%, (1,2)]
bumb

18 /20

Flip a pixel on a flat part

[|
[(2,1),(1,00°, o7,(1,0),0%,0%,(1,0),07, (1,0)% 0%, (1,2)]
bumb

How to simplify o~ ?

18 /20

Flip a pixel on a flat part

[(2,1),(1,00°, o7,(1,0),0%,0%,(1,0),07, (1,0)% 0%, (1,2)]

bumb

How to simplify o~ ?

@ Cancellation : [0, 0] =[0",07] =]

18 /20

Flip a pixel on a flat part

[(2,1),(1,00°, o7,(1,0),0%,0%,(1,0),07, (1,0)% 0%, (1,2)]

bumb

How to simplify o~ ?

@ Cancellation : [0, 0] =[0",07] =]

@ Split the grid-edges in order to have a local part build only with

{o7,07,(1,0),(0,1), T,\E), (0,/\1/)} Operators o~ are then simplify using
local rules such as :

[(1,0),07,(1,0), 6] =[(1,1)] and [, (1,0)%,07] = [(0,1)¥]

18 /20

Main result

Proposition

A grid-curve defining a digital contour may be simplified to a MLP
using local rules.

19/20

Main result

Proposition

A grid-curve defining a digital contour may be simplified to a MLP
using local rules.

Proposition

Given a grid-curve that is the MLP of a digital contour, this
contour may be modified by adding or removing one pixel and its
MLP updated in time sub-linear with respect to the length of the
modified part of the MLP.

Implemente in project ImaGene available at
gforge.liris.cnrs.fr/projects/imagene

19/20

MERCI !

