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Introduction to polyominoes

• Discrete plane : Z2

• Definition : A polyomino is
a finite, 4-connected subset of
the plane, without holes.

• Notation : Let p be a poly-
omino and −→v a vector of Z2,
p−→v will denote the image of p
by de translation −→v .
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Xavier Provençal On the problem of tiling the plane with polyomino



The tiling problem
Beauquier-Nivat characterization

A fast algorithm to detect exact polyominoes

Definitions
General statement
Finite case
Infinite case

Introduction to polyominoes

• Discrete plane : Z2

• Definition : A polyomino is
a finite, 4-connected subset of
the plane, without holes.

• Notation : Let p be a poly-
omino and −→v a vector of Z2,
p−→v will denote the image of p
by de translation −→v .

�
�

�
�/

p

−→v
p−→v

�
�
�
�
�

A
A

A
A
A

�
�
�
�
�

A
A

A
A
A
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General statement of the tiling problem

Definition (Tiling)

A tiling T of a subset D ⊂ Z2 by a set of polyominoes P is a set
of couples (p,−→u ) ∈ P × Z2 such that :

D is the union of the polyominoes p−→u .

For any two distinct (p,−→u ), (p′,−→v ) ∈ T , p−→u and p′−→v are
non-overlapping.

Definition (The Tiling Problem)

Given a set of polyominoes P and a subset D ⊂ Z2.
Does D admits a tiling by P.
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Finite case

Remark

The tiling problem with D finite is in NP.

Remark

The tiling problem with D finite and P =
{

,
}

is in P.

Theorem (Garey, Johnson and Papadimitriou)

The tiling problem with D finite and P =
{

,
}

is
NP-Complete.
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Infinite case

We concider the case where D = Z2 and P is finite.

Definition (Periodic Tiling)

A tiling T is periodic if there exist two linearly independant vectors
−→u and −→v such that T is not changed by the corresponding
translations.

Definition (Half-Periodic Tiling)

A tiling T is half-periodic if there exists a vectors −→u such that T
is not changed by the corresponding translation.
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Periodic tiling Half-periodic tiling

-
6

-
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Half-Periodic implies periodic

Remark

If there is an half-periodic tiling of the plane by P, then there is
also a periodic one.

-
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Nonperiodic tilings

Theorem (Berger, 1966)

The tiling problem with P finite and D = Z2 is undecidable.

Corollary

There are some finite sets P such that tilings of the plane by P do
exist and are all nonperiodic.
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Tilings with one polyomino

Definition

A polyomino p is exact if the set P = {p} tiles the plane.

Definition

A tiling of the plane T by an exact polyomino p is regular if there
exist two vectors −→u and −→v such that

T = {(p, i−→u + j−→v )|i , j ∈ Z2}

Xavier Provençal On the problem of tiling the plane with polyomino



The tiling problem
Beauquier-Nivat characterization

A fast algorithm to detect exact polyominoes

Definitions
General statement
Finite case
Infinite case

Tilings with one polyomino

Definition

A polyomino p is exact if the set P = {p} tiles the plane.

Definition

A tiling of the plane T by an exact polyomino p is regular if there
exist two vectors −→u and −→v such that

T = {(p, i−→u + j−→v )|i , j ∈ Z2}
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Half-periodic tiling
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Periodic tiling
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Regular tiling
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Tilings with one polyomino

Theorem (Wijshoff and Van Leeuven, 1984)

If a polyomino p tiles the plane, then there exists a regular tiling of
the plane by p.

Corollary

The tiling problem with P = {p} and D = Z2 is decidable in
polynomial time.
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Xavier Provençal On the problem of tiling the plane with polyomino



The tiling problem
Beauquier-Nivat characterization

A fast algorithm to detect exact polyominoes

Definitions
General statement
Finite case
Infinite case

Example

J
J

JJ]

�
�

�3

J
J

JJ]

�
�

�3

J
J

JJ]

�
�

�3

J
J

JJ]

�
�

�3

J
J

JJ]

�
�

�3

J
J

JJ]

�
�

�3
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Coding the boundary of a polyomino

a→ b ↑

Σ =
{
a, a, b, b

}

a← b ↓

a a a a

b

a
b

aa

b
a

b

Notation :
w ≡ w ′ notes that w
and w ′ are conjugate.

There exist u, v ∈ Σ∗

such that :
w = uv and w ′ = vu.

wa a a a b a b a a b a b.
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Theorem (Beauquier and Nivat, 1991)

A polyomino p is exact if and only its boundary word
w ≡ XYZX̂ Ŷ Ẑ for some X ,Y ,Z ∈ Σ∗.
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ŵ = ûv = v̂ û and w = ̂̂w .

u = a a b a b a b t

6
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û = b a b a b a a
t

�

Theorem (Beauquier and Nivat, 1991)

A polyomino p is exact if and only its boundary word
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û = b a b a b a a
t

�

Theorem (Beauquier and Nivat, 1991)

A polyomino p is exact if and only its boundary word
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w ≡ XYZX̂ Ŷ Ẑ for some X ,Y ,Z ∈ Σ∗.
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Neighbouring

Definition

Two polyominoes p and q are simply neighbouring if

They are adjacent.

They don’t overlap.

They don’t form a hole.
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Surrounding

Definition

A surrounding of the polyomino p is an ordered sequence of
translated copies (p0, p1, . . . , pk−1) such that for every i from 0 to
k, the polyominoes p, pi and pi+1 form a triad.

p

p0

p1p2
p3

p4
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Xavier Provençal On the problem of tiling the plane with polyomino



The tiling problem
Beauquier-Nivat characterization

A fast algorithm to detect exact polyominoes

Polyominoes and words
Definitions
Surroundings and tilings
Surroundings and the factorization

Surroundings and tilings

Proposition

A polyomino p is exact if and only if it admits a surrounding.

Q
Q

Qk−→u
�

��−→v
Q

Q
Qk −→u

�
��−→v
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Xavier Provençal On the problem of tiling the plane with polyomino



The tiling problem
Beauquier-Nivat characterization

A fast algorithm to detect exact polyominoes

Polyominoes and words
Definitions
Surroundings and tilings
Surroundings and the factorization

Surroundings and the factorization

Proposition

A polyomino p admits a surrounding if and only if its boundary
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Ẑ
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Ẑ
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Ẑ
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Xavier Provençal On the problem of tiling the plane with polyomino



The tiling problem
Beauquier-Nivat characterization

A fast algorithm to detect exact polyominoes

Polyominoes and words
Definitions
Surroundings and tilings
Surroundings and the factorization

Surroundings and the factorization

Proposition

A polyomino p admits a surrounding if and only if its boundary
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Ẑ
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Ẑ
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Ẑ
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Ẑ
(((PPPP

(((
PPPP

X Y

Z
X̂Ŷ
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Ẑ
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Ẑ
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Definition

An exact polyomino p with Beauquier-Nivat factorization
XYZX̂ Ŷ Ẑ is called a pseudo-square if one of the factors X ,Y ,Z is
the empty word. It is called a pseudo-hexagon otherwise.
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Complexity

Let n be the length of the word coding the boundary of a
polyomino p.

Remark

The Beauquier-Nivat characterization provides a naive algorithm to
determine if p is exact in O(n4).

Remark

This problem admits Ω(n) as a lower bound.

Theorem (Gambini and Vuillon, 2003)

There is an algorithm to test if a polyomino satisfies the
Beauquier-Nivat characterization in O(n2).
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Admissible factors

Definition

Let A be a factor of the word w coding a polyomino p. A is
admissible if

w ≡ AxÂy, for x , y such that |x | = |y |.
A is maximal, that is, first(x) 6= last(x) and
first(y) 6= last(y).
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Admissible factors

Proposition

Let A be the set of all admissible factors overlapping a position α
in w and Â be the set of their respective homologous factors.
Then, there is at least one position in w that is not covered by any
element of A ∪ Â.

w ≡

α

?

︸ ︷︷ ︸
A1

︸ ︷︷ ︸
Â1

︸ ︷︷ ︸
A2

︸ ︷︷ ︸
Â2
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α

?
B̂ B

A Â

-�
x

-�
y
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1. |x | = |y |

w ≡
B̂ B

A Â
-�
x

-�
y

-�
x̂

-�
x̂

-�
x

-�
U

-�
V

-�

Û

-�

V̂

w ≡ x̂ U x V x̂ Û x V̂ .

�� ���� ���� ���� ��

Lemma (Dorat and Nivat, 2003) (Brlek, Labelle and Lacasse, 2005)

In a non-intersecting closed path on a square lattice,

#(left turns)−#(right turns) = 4.
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Û

-�

V̂

w ≡ x̂ U x V x̂ Û x V̂ .
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2. |x | 6= |y |.

w ≡
B̂ B

A Â
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w ≡ α β γ, where
−→
β =

−→
0 .

α

β

γ

�
�
�
�
�
�
�A

A
A
A
A
A
A
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u û u û
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factorization w ≡ XYZX̂ Ŷ Ẑ . Then, X ,Y and Z are admissible.
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Xavier Provençal On the problem of tiling the plane with polyomino



The tiling problem
Beauquier-Nivat characterization

A fast algorithm to detect exact polyominoes

Admissible factors, detection and properties
Detecting pseudo-squares
Detection pseudo-hexagons

Admissible factors

Lemma

Let w a word coding a polyomino p with Beauquier-Nivat’s
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factorization w ≡ XYZX̂ Ŷ Ẑ . Then, X ,Y and Z are admissible.
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A is maximal, that is, first(x) 6= last(x) and
first(y) 6= last(y).

By contradiction, assume that X is not maximal, then
first(YZ ) = last(YZ ).
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6

p
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w ≡ AxÂy , for x , y such that |x | = |y |.
Direct consequence of the fact that |u| = |û| for all u ∈ Σ∗.
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Â︷ ︸︸ ︷
︸ ︷︷ ︸

A

︸ ︷︷ ︸
x

︸ ︷︷ ︸
Â
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Ŷ

︸ ︷︷ ︸
Ẑ
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Lemma

Given a position p in the word w coding a polyomino, all the
admissible factors overlapping p can be listed in linear time.

If w ≡ A x Â y then ŵ ≡ ŷ A x̂ Â.

w ≡
p

ŵ ≡
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w ≡
p
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w ≡
p
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Xavier Provençal On the problem of tiling the plane with polyomino



The tiling problem
Beauquier-Nivat characterization

A fast algorithm to detect exact polyominoes

Admissible factors, detection and properties
Detecting pseudo-squares
Detection pseudo-hexagons

Listing admissible factors

Lemma

Given a position p in the word w coding a polyomino, all the
admissible factors overlapping p can be listed in linear time.

If w ≡ A x Â y then ŵ ≡ ŷ A x̂ Â.
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Theorem

Let w be the boundary of p. Determining if w codes a
pseudo-square is decidable in linear time.
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Â︷ ︸︸ ︷-� x̂ �-ŷ v-

If x = ŷ then w ≡ XY X̂ Ŷ .

Since w ≡ Ax Â y then ŵ ≡ ŷ A x̂ Â.
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A︷ ︸︸ ︷ Â︷ ︸︸ ︷-� x �- y

v -

ŵ ≡ v� -
A︷ ︸︸ ︷ Â︷ ︸︸ ︷-� x̂ �-ŷ
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A︷ ︸︸ ︷ Â︷ ︸︸ ︷-� x̂ �-ŷ v
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The tiling problem
Beauquier-Nivat characterization

A fast algorithm to detect exact polyominoes

Admissible factors, detection and properties
Detecting pseudo-squares
Detection pseudo-hexagons

k-square-free words

Definition

A word w is k-square-free if

max {|f | : f ∈ Squares(w)} < k.

Exemple : w = a a b a b︸ ︷︷ ︸ b a is k-square-free for k ≥ 5.

Lemma

Let w be a k-square-free word coding a polyomino, and let α be a
position in w. the number of admissible factors overlapping α in w
is bounded by 4k + 2 log(n).
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Xavier Provençal On the problem of tiling the plane with polyomino



The tiling problem
Beauquier-Nivat characterization

A fast algorithm to detect exact polyominoes

Admissible factors, detection and properties
Detecting pseudo-squares
Detection pseudo-hexagons

k-square-free words

Definition

A word w is k-square-free if

max {|f | : f ∈ Squares(w)} < k.

Exemple : w = a a b a b︸ ︷︷ ︸ b a is k-square-free for k ≥ 5.

Lemma

Let w be a k-square-free word coding a polyomino, and let α be a
position in w. the number of admissible factors overlapping α in w
is bounded by 4k + 2 log(n).
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Detecting pseudo-hexagons

Theorem

Let w be a k-square-free word coding a polyomino, with
k ∈ O(

√
n). Determining if w codes a pseudo-hexagon is decidable

in linear time.
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Detecting pseudo-hexagons

Input : w ∈ Σ∗ coding a polyomino p.
Build L1 the list of all admissible factors that overlap the position α.
β := (the position of the rightmost letter of w include in a factor of L1) + 1.
Build L2 the list of all admissible factors that overlap the position β.
For all X ∈ L1 do
For all Y ∈ L2 do

If w ≡ XYxX̂ Ŷ y then
Compute i : the position of x in w .
Compute j : the position of ŷ in ŵ .
If longest common extention(w , ŵ , i , j) = |x | then

p is a speudo-hexagon.
End if

End if
End for

End for

w ≡
?

α

X X̂
?

β

Y Ŷy x

ŵ ≡ X X̂Y Ŷ ŷx̂

s -

s -

Ẑ Z

O
(
n + (k + log n)2

)
= O(n)
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If longest common extention(w , ŵ , i , j) = |x | then

p is a speudo-hexagon.
End if

End if
End for

End for

w ≡
?

α

X X̂
?

β

Y Ŷy x
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If longest common extention(w , ŵ , i , j) = |x | then
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Xavier Provençal On the problem of tiling the plane with polyomino



The tiling problem
Beauquier-Nivat characterization

A fast algorithm to detect exact polyominoes

Admissible factors, detection and properties
Detecting pseudo-squares
Detection pseudo-hexagons

Detecting pseudo-hexagons

Input : w ∈ Σ∗ coding a polyomino p.
Build L1 the list of all admissible factors that overlap the position α.
β := (the position of the rightmost letter of w include in a factor of L1) + 1.
Build L2 the list of all admissible factors that overlap the position β.
For all X ∈ L1 do
For all Y ∈ L2 do

If w ≡ XYxX̂ Ŷ y then
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s -

s -
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ŵ ≡ X X̂Y Ŷ ŷx̂
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p is a speudo-hexagon.
End if

End if
End for

End for

w ≡
?

α

X X̂
?

β

Y Ŷy x
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For all X ∈ L1 do
For all Y ∈ L2 do

If w ≡ XYxX̂ Ŷ y then
Compute i : the position of x in w .
Compute j : the position of ŷ in ŵ .
If longest common extention(w , ŵ , i , j) = |x | then

p is a speudo-hexagon.
End if

End if
End for

End for

w ≡
?

α

X X̂
?

β

Y Ŷ

y x

ŵ ≡ X X̂Y Ŷ ŷx̂

s -

s -

Ẑ Z

O
(
n + (k + log n)2

)
= O(n)
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Xavier Provençal On the problem of tiling the plane with polyomino


	The tiling problem

