L'addition du cancre et son utilisation pour approximer un réel

Xavier Provençal

Séminaire MATH-S-LO 2 mars 2022, Cégep Saint-Laurent, Montréal

Approximer un réel

Pour tout $x\in\mathbb{R}$, il existe une suite $[q_0,q_1,q_2,\dots]$ telle que $\lim_{n\to\infty}q_n=x.$

Approximer un réel

Pour tout $x \in \mathbb{R}$, il existe une suite $[q_0, q_1, q_2, \dots]$ telle que $\lim_{n \to \infty} q_n = x$.

Par exemple:

 $\pi \approx 3.14159...$

Approximer un réel

Pour tout $x \in \mathbb{R}$, il existe une suite $[q_0, q_1, q_2, \dots]$ telle que $\lim_{n \to \infty} q_n = x$.

Par exemple:

$$\begin{array}{llll} \pi & \approx & 3.14159\ldots \\ \pi & \approx & \frac{3}{1} \\ \pi & \approx & \frac{31}{10} \\ \pi & \approx & \frac{314}{100} \\ \pi & \approx & \frac{3141}{1000} \\ \pi & \approx & \frac{31415}{100000} \\ \pi & \approx & \frac{314159}{1000000} \\ \vdots & & & & & & & \\ \vdots & & & & & & \\ \end{array}$$

Étant donné $q, s \in \{1, 2, 3, \dots\}$ et $x \in \mathbb{R}$,

$$p = \operatorname{argmin} \left\{ \left| \frac{p}{q} - x \right| \; ; \; p \in \mathbb{Z} \right\}$$
 $s = \operatorname{argmin} \left\{ \left| \frac{r}{s} - x \right| \; ; \; r \in \mathbb{Z} \right\}$

Il est faux que si q > s alors $\left| \frac{p}{q} - x \right| < \left| \frac{r}{s} - x \right|$

Étant donné $q, s \in \{1, 2, 3, \dots\}$ et $x \in \mathbb{R}$,

$$p = \operatorname{argmin} \left\{ \left| \frac{p}{q} - x \right| \; ; \; p \in \mathbb{Z} \right\}$$
 $s = \operatorname{argmin} \left\{ \left| \frac{r}{s} - x \right| \; ; \; r \in \mathbb{Z} \right\}$

Il est faux que si q > s alors $\left| \frac{p}{q} - x \right| < \left| \frac{r}{s} - x \right|$

La fraction avec le plus petit dénominateur qui permet d'approximer π mieux que $\frac{22}{7}$ est $\frac{179}{57}$.

La fraction avec le plus petit dénominateur qui permet d'approximer π mieux que $\frac{355}{113}$ est $\frac{52163}{16604}$.

Définition

Une fraction $rac{p}{q}$ est une **bonne approximation** de $x \in \mathbb{R}$ si

$$\left| \frac{p}{q} - x \right| < \min \left\{ \left| \frac{r}{s} - x \right| ; r, s \in \mathbb{Z}, 0 < s < q \right\}.$$

De manière analogue, on définit une **bonne sous-approximation** et une **bonne sur-approximation**.

Définition (Addition du cancre)

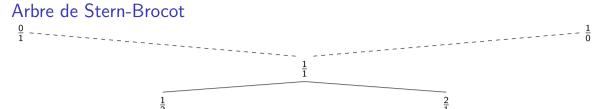
Étant données deux fractions réduites $\frac{p}{q}$ et $\frac{r}{s}$, on définit \oplus par :

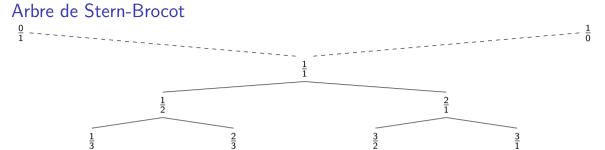
$$\frac{p}{q} \oplus \frac{r}{s} = \frac{p+r}{q+s}$$

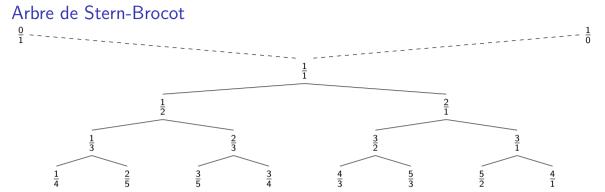
Arbre de Stern-Brocot

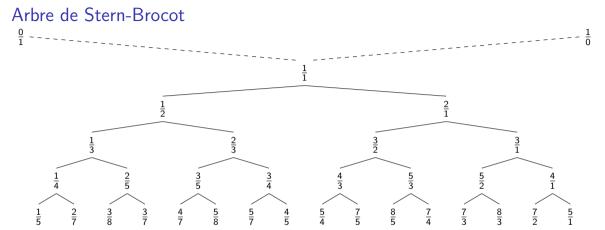
- 1

 $\frac{1}{1}$





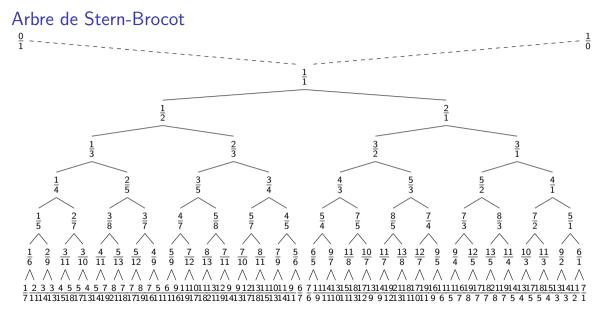


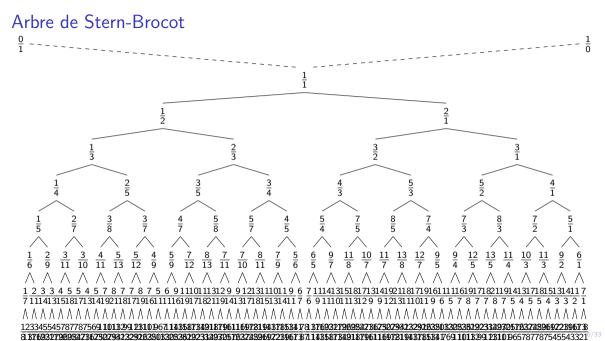


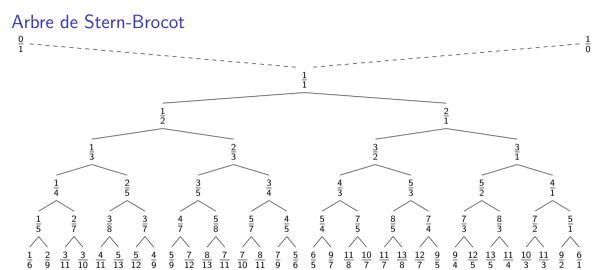
Arbre de Stern-Brocot

 $\frac{6}{5}$ $\frac{9}{7}$

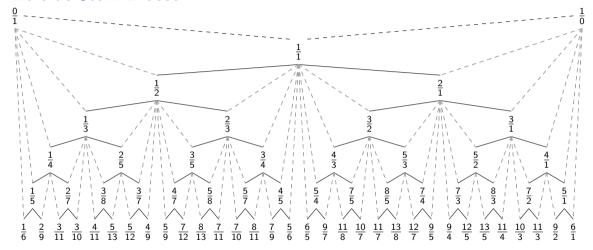
 $\frac{9}{4}$



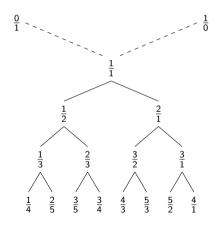


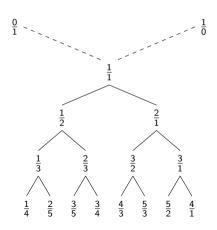


Arbre de Stern-Brocot

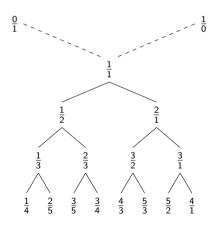


Quelques propriétés de l'arbre de Stern-Brocot



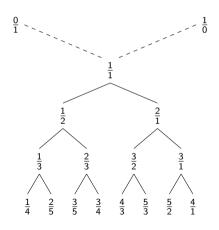


$$I_0 = \begin{bmatrix} \frac{0}{1}, \frac{1}{0} \end{bmatrix}$$

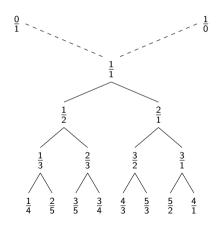


$$l_0 = \begin{bmatrix} \frac{0}{1}, \frac{1}{0} \end{bmatrix}$$

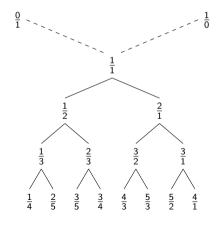
$$l_1 = \begin{bmatrix} \frac{0}{1}, \frac{1}{1}, \frac{1}{0} \end{bmatrix}$$



$$\begin{array}{rcl} I_0 & = & \left[\begin{array}{ccc} \frac{0}{1}, & \frac{1}{0} \end{array} \right] \\ I_1 & = & \left[\begin{array}{ccc} \frac{0}{1}, & \frac{1}{1}, & \frac{1}{0} \end{array} \right] \\ I_2 & = & \left[\begin{array}{ccc} \frac{0}{1}, & \frac{1}{2}, & \frac{1}{1}, & \frac{2}{1}, & \frac{1}{0} \end{array} \right] \end{array}$$



$$\begin{array}{rcl}
I_0 & = & \left[\begin{array}{cc} \frac{0}{1}, \ \frac{1}{0} \end{array}\right] \\
I_1 & = & \left[\begin{array}{cc} \frac{0}{1}, \ \frac{1}{1}, \ \frac{1}{0} \end{array}\right] \\
I_2 & = & \left[\begin{array}{cc} \frac{0}{1}, \ \frac{1}{2}, \ \frac{1}{1}, \ \frac{2}{1}, \ \frac{1}{0} \end{array}\right] \\
I_3 & = & \left[\begin{array}{cc} \frac{0}{1}, \ \frac{1}{3}, \ \frac{1}{2}, \ \frac{2}{3}, \ \frac{1}{1}, \ \frac{3}{2}, \ \frac{2}{1}, \ \frac{3}{1}, \ \frac{1}{0} \end{array}\right] \\
\vdots & \vdots$$



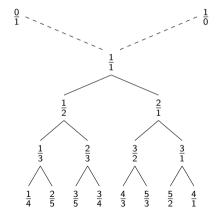
$$\begin{array}{rcl}
I_0 & = & \left[\begin{array}{ccc} \frac{0}{1}, & \frac{1}{0} \end{array} \right] \\
I_1 & = & \left[\begin{array}{ccc} \frac{0}{1}, & \frac{1}{1}, & \frac{1}{0} \end{array} \right] \\
I_2 & = & \left[\begin{array}{ccc} \frac{0}{1}, & \frac{1}{2}, & \frac{1}{1}, & \frac{2}{1}, & \frac{1}{0} \end{array} \right] \\
I_3 & = & \left[\begin{array}{ccc} \frac{0}{1}, & \frac{1}{3}, & \frac{1}{2}, & \frac{2}{3}, & \frac{1}{1}, & \frac{3}{2}, & \frac{2}{1}, & \frac{3}{1}, & \frac{1}{0} \end{array} \right] \\
& \vdots \\
\end{array}$$

Définition

Deux fractions sont dites **consécutives** si elles sont consécutives dans une liste l_i .

Théorème

Soient $\frac{p}{q}$ et $\frac{r}{s}$ deux fractions consécutives, $\begin{vmatrix} p \\ q \end{vmatrix}$

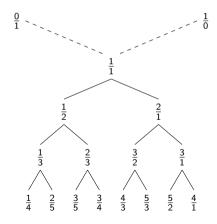


Preuve :

Théorème

Soient $\frac{p}{q}$ et $\frac{r}{s}$ deux fractions consécutives, $\begin{vmatrix} p & r \\ q & s \end{vmatrix} = -1$.

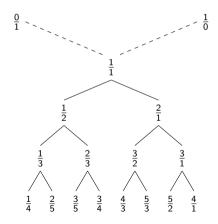
$$\left|\begin{array}{cc} p & r \\ q & s \end{array}\right| = -1.$$



Preuve : par récurrence

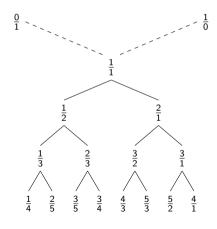
$$\left|\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right| = -1.$$

L'arbre de Stern-Brocot est trié.



Preuve:

L'arbre de Stern-Brocot est trié.



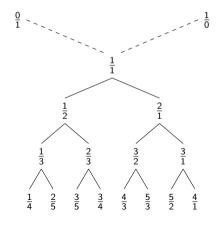
Preuve:

$$\frac{p}{q} < \frac{r}{s} \iff \frac{r}{s} - \frac{p}{q} > 0 \iff qr - ps > 0.$$

On vient de voir que si $\frac{p}{q}$ et $\frac{r}{s}$ sont deux fractions consécutives, alors :

$$\left| egin{array}{cc} p & r \ q & s \end{array} \right| = ps - qr = -1.$$

L'arbre de Stern-Brocot est trié.



Preuve:

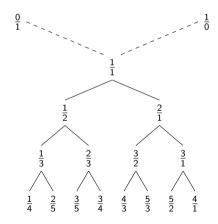
$$\frac{p}{q} < \frac{r}{s} \iff \frac{r}{s} - \frac{p}{q} > 0 \iff qr - ps > 0.$$

On vient de voir que si $\frac{p}{q}$ et $\frac{r}{s}$ sont deux fractions consécutives, alors :

$$\left| \begin{array}{cc} p & r \\ q & s \end{array} \right| = ps - qr = -1.$$

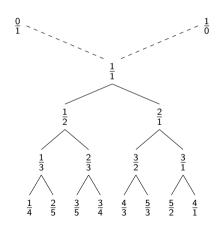
Note : il s'agit d'un arbre binaire de fouille.

Toutes les fractions dans l'arbre de Stern-Brocot sont réduites.



Preuve:

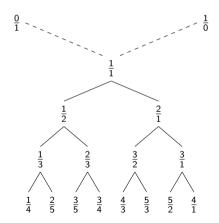
Toutes les fractions dans l'arbre de Stern-Brocot sont réduites.



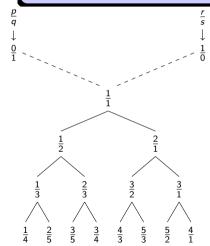
Preuve : soient $\frac{p}{a}$ et $\frac{r}{s}$ deux fractions consécutives, alors

$$\left| \begin{array}{cc} p & r \\ q & s \end{array} \right| = -1$$

Toute fraction réduite apparaît dans l'arbre de Stern-Brocot.



Toute fraction réduite apparaît dans l'arbre de Stern-Brocot.



Algorithme de recherche d'une fration $\frac{a}{b}$.

$$\frac{p}{q}:=\frac{0}{1}, \qquad \frac{r}{s}:=\frac{1}{0}$$

tant que $\frac{a}{b} \neq \frac{p}{q} \oplus \frac{r}{s}$ faire

$$si \frac{a}{b} < \frac{p}{q} \oplus \frac{r}{s} alors$$

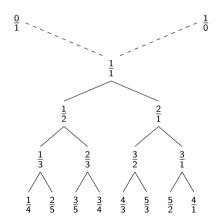
$$\frac{r}{s} := \frac{p}{q} \oplus \frac{r}{s}$$

si
$$\frac{a}{b} > \frac{p}{q} \oplus \frac{r}{s}$$
 alor

$$\frac{p}{q}:=\frac{p}{q}\oplus\frac{r}{s}$$

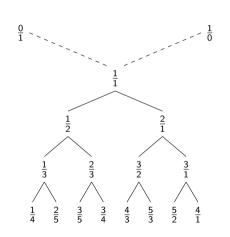
Propriété

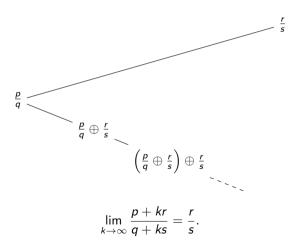
La recherche d'un nombre $x \in \mathbb{R} \setminus \mathbb{Q}$ effectue un zig-zag infini.



Propriété

La recherche d'un nombre $x \in \mathbb{R} \setminus \mathbb{Q}$ effectue un zig-zag infini.





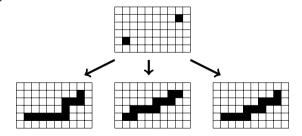
- ightharpoonup Objectif : faire de la géométrie dans \mathbb{Z}^d .
- Visualisation :

- ightharpoonup Objectif : faire de la géométrie dans \mathbb{Z}^d .
- ► Visualisation :

Le cas des droites

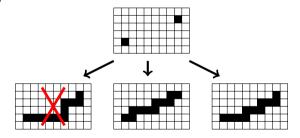
- ightharpoonup Objectif : faire de la géométrie dans \mathbb{Z}^d .
- Visualisation :

► Le cas des droites



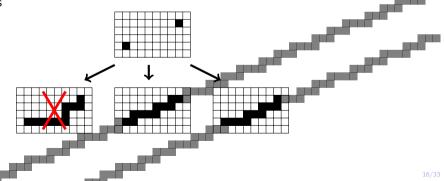
- ightharpoonup Objectif : faire de la géométrie dans \mathbb{Z}^d .
- Visualisation :

Le cas des droites



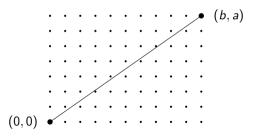
- ightharpoonup Objectif : faire de la géométrie dans \mathbb{Z}^d .
- Visualisation :

► Le cas des droites



Definition

- ▶ va de (0,0) à (b, a),
- ▶ formé des pas \rightarrow et \uparrow ,
- reste sous la droite passant par (0,0) et (b,a),
- ightharpoonup ne laisse aucun point de \mathbb{Z}^2 entre le chemin et la droite.



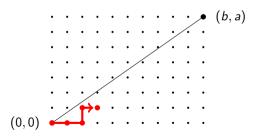
Definition

- ▶ va de (0,0) à (b, a),
- ▶ formé des pas \rightarrow et \uparrow ,
- reste sous la droite passant par (0,0) et (b,a),
- ightharpoonup ne laisse aucun point de \mathbb{Z}^2 entre le chemin et la droite.



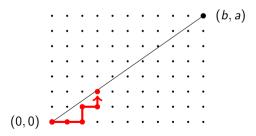
Definition

- ▶ va de (0,0) à (b, a),
- ▶ formé des pas \rightarrow et \uparrow ,
- reste sous la droite passant par (0,0) et (b,a),
- ightharpoonup ne laisse aucun point de \mathbb{Z}^2 entre le chemin et la droite.



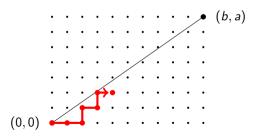
Definition

- ▶ va de (0,0) à (b, a),
- ▶ formé des pas \rightarrow et \uparrow ,
- reste sous la droite passant par (0,0) et (b,a),
- ightharpoonup ne laisse aucun point de \mathbb{Z}^2 entre le chemin et la droite.



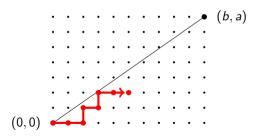
Definition

- ▶ va de (0,0) à (b, a),
- ightharpoonup formé des pas ightarrow et \uparrow ,
- reste sous la droite passant par (0,0) et (b,a),
- ightharpoonup ne laisse aucun point de \mathbb{Z}^2 entre le chemin et la droite.



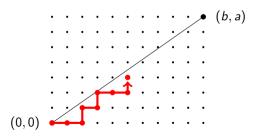
Definition

- ▶ va de (0,0) à (b, a),
- ▶ formé des pas \rightarrow et \uparrow ,
- reste sous la droite passant par (0,0) et (b,a),
- ightharpoonup ne laisse aucun point de \mathbb{Z}^2 entre le chemin et la droite.



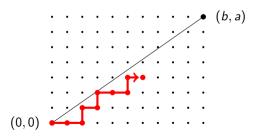
Definition

- ▶ va de (0,0) à (b, a),
- ▶ formé des pas \rightarrow et \uparrow ,
- reste sous la droite passant par (0,0) et (b,a),
- ightharpoonup ne laisse aucun point de \mathbb{Z}^2 entre le chemin et la droite.



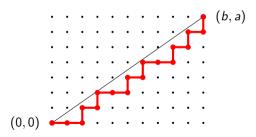
Definition

- ▶ va de (0,0) à (b, a),
- ightharpoonup formé des pas ightarrow et \uparrow ,
- reste sous la droite passant par (0,0) et (b,a),
- ightharpoonup ne laisse aucun point de \mathbb{Z}^2 entre le chemin et la droite.



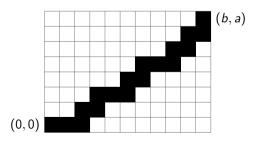
Definition

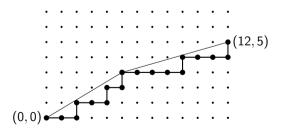
- ightharpoonup va de (0,0) à (b,a),
- ▶ formé des pas \rightarrow et \uparrow ,
- reste sous la droite passant par (0,0) et (b,a),
- ightharpoonup ne laisse aucun point de \mathbb{Z}^2 entre le chemin et la droite.

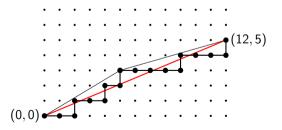


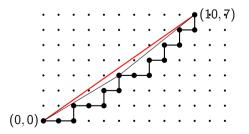
Definition

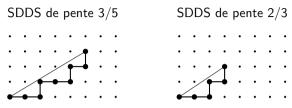
- ▶ va de (0,0) à (b, a),
- ▶ formé des pas \rightarrow et \uparrow ,
- reste sous la droite passant par (0,0) et (b,a),
- ightharpoonup ne laisse aucun point de \mathbb{Z}^2 entre le chemin et la droite.

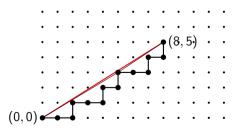






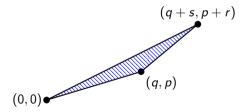






Théorème

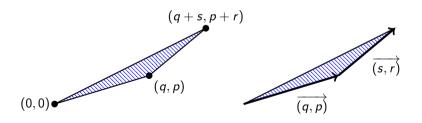
Si $\frac{p}{q}$ et $\frac{r}{s}$ sont deux fractions consécutives, alors la composition des SDDS de pente $\frac{p}{q}$ et $\frac{r}{s}$ est le SDDS de pente $\frac{p}{q} \oplus \frac{r}{s}$.



Théorème de Pick

Théorème

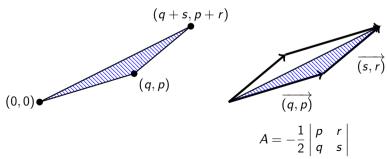
Si $\frac{p}{q}$ et $\frac{r}{s}$ sont deux fractions consécutives, alors la composition des SDDS de pente $\frac{p}{q}$ et $\frac{r}{s}$ est le SDDS de pente $\frac{p}{q} \oplus \frac{r}{s}$.



Théorème de Pick

Théorème

Si $\frac{p}{q}$ et $\frac{r}{s}$ sont deux fractions consécutives, alors la composition des SDDS de pente $\frac{p}{q}$ et $\frac{r}{s}$ est le SDDS de pente $\frac{p}{q} \oplus \frac{r}{s}$.



Théorème de Pick

Applications en analyse d'images

Définition (Wikipedia)

«L'analyse d'images est l'extraction d'informations significatives dans des images; principalement d'images digitales, par des techniques de traitement d'image digitales.»

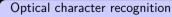
Reconnaissance d'objets

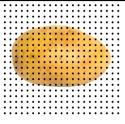
Détection/suivi du mouvement

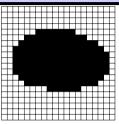
Segmentation

Imagerie médicale

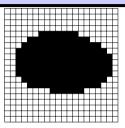
Reconstruction 3D







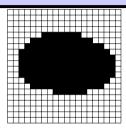
Discrétisation : $\operatorname{Disc}(P) = P \cap \mathbb{Z}^d$.



Étant donné $\operatorname{Disc}(P)$, que peut-on dire de P?

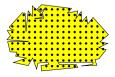
- ► Convexité ?
- ► Aire ?
- ► Périmètre ?
- ► Courbure ?

Discrétisation : $\operatorname{Disc}(P) = P \cap \mathbb{Z}^d$.

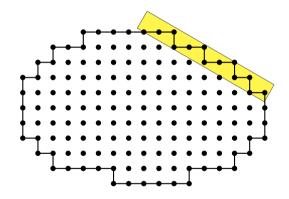


Étant donné $\operatorname{Disc}(P)$, que peut-on dire de P?

- ► Convexité ?
- ► Aire ?
- Périmètre ?
- ► Courbure ?



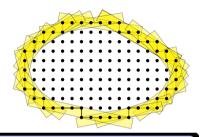
SDD maximaux sur bord d'une forme discrète



Tangential cover

Définition ([Feschet, Tougne 99])

The tangential cover of a discrete shape is the sequence of all maximal DSS on its boundary.



Théorème ([Debled-Rennesson, Reveilles 1995][Lachaud, Vialard, de Vieilleville 2007])

The computation of the tangential cover take a time in O(n) where n is the number of points on the boundary of the shape.

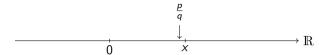
Applications of the tangential cover include :

- Convexity test
 [Debled-Rennesson, Reiter-Doerksen 04]
- ► Tangent estimation [Feschet, Tougne 99], [Lachaud, de Vieilleville 07]

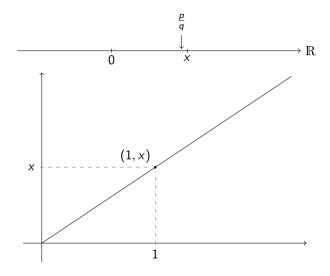
- Length estimation [Lachaud, de Vieilleville 07]
- Curvature estimation [Lachaud, Kerautret, Naegel 08]
- Automatic noise detection [Lachaud, Kerautret 12]

Approximation d'un réel

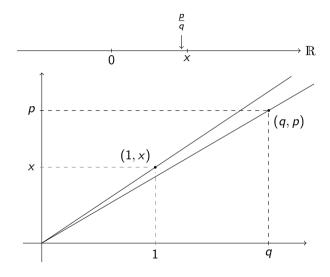
Approximation d'un irrationnel



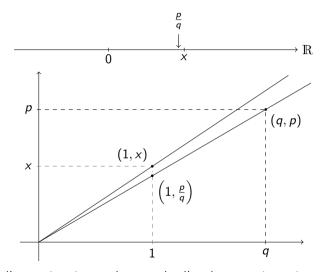
Approximation d'un irrationnel



Approximation d'un irrationnel

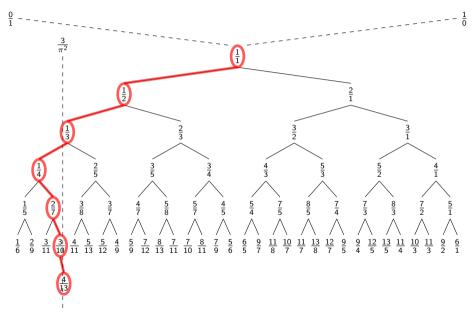


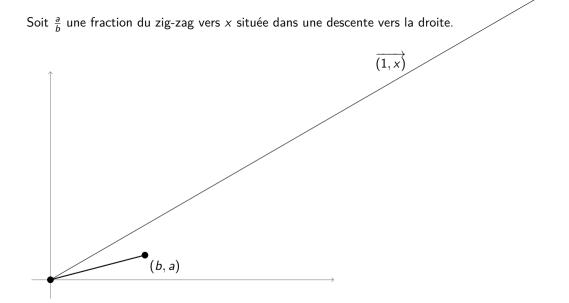
Approximation d'un irrationnel

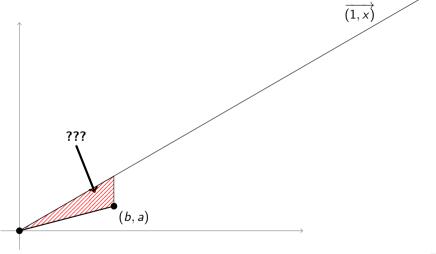


Plus l'approximation est bonne, plus l'angle est petit et vice-versa.

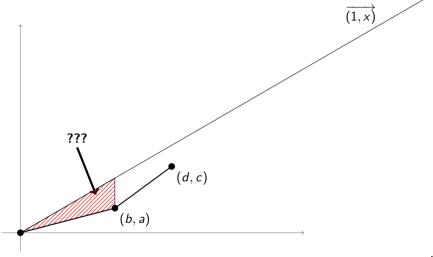
Recherche d'un irrationnel dans l'arbre de Stern-Brocot



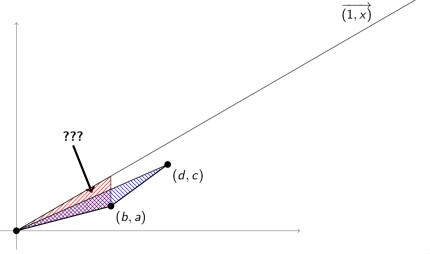




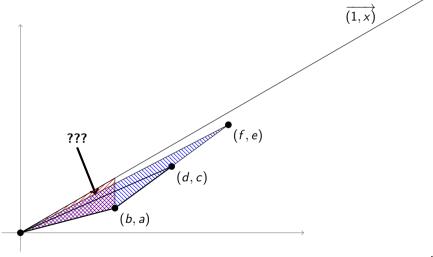
 $\frac{a}{b}$ est une bonne sous-approximation de x ssi il n'y a pas de point entier dans \boxtimes



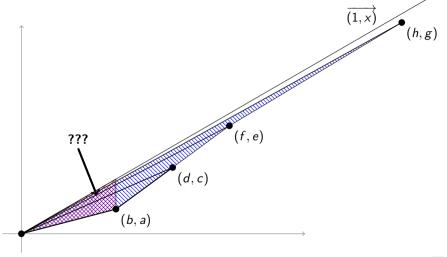
 $\frac{a}{b}$ est une bonne sous-approximation de x ssi il n'y a pas de point entier dans \boxtimes



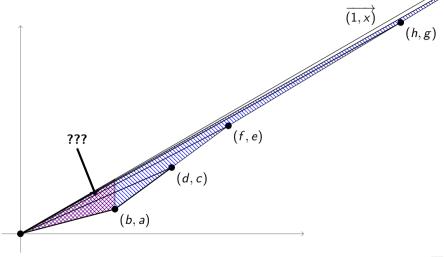
 $\frac{a}{b}$ est une bonne sous-approximation de x ssi il n'y a pas de point entier dans \boxtimes



 $\frac{a}{b}$ est une bonne sous-approximation de x ssi il n'y a pas de point entier dans \boxtimes

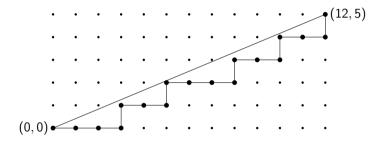


 $\frac{a}{b}$ est une bonne sous-approximation de x ssi il n'y a pas de point entier dans \boxtimes

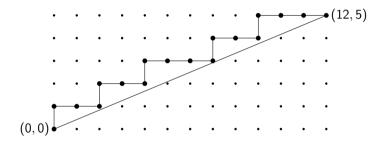


 $\frac{a}{b}$ est une bonne sous-approximation de x ssi il n'y a pas de point entier dans \boxtimes

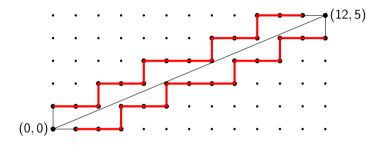
Sur-approximations



Sur-approximations

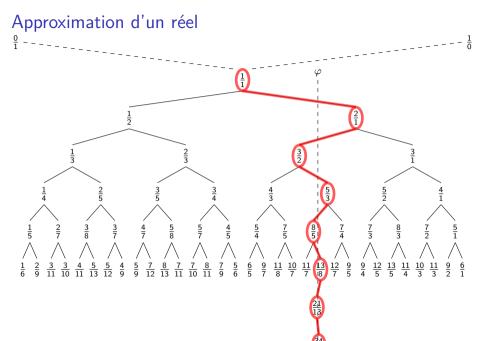


Sur-approximations



Approximation d'un réel $\frac{7}{10}$ $\frac{8}{11}$ $\frac{7}{9}$ $\frac{5}{6}$ $\frac{6}{5}$ $\frac{9}{7}$

Approximation d'un réel $\frac{7}{10}$ $\frac{8}{11}$ $\frac{7}{9}$ $\frac{5}{6}$ $\frac{6}{5}$ $\frac{9}{7}$



Fin

Fin