Generation of digital planes using generalized continued-fractions algorithms

Xavier Provençal Joint work with : Damien Jamet and Nadia Lafrenière

Journées nationales du GDR IM Jeudi le 16 mars, Montpellier



Construction guided by Euclid

Fully Subtractiv

New algorithm

# Definition (Reveillès (1991), Kovalev (1990))

An arithmetic digital line is the set :

 $\mathcal{D}((a, b), \mu) = \{(x, y) \in \mathbb{Z}^2 \mid 0 \le ax + by + \mu < |a| + |b|\}$  where

- (a, b) is the normal vector,
- -b/a is the **slope**,
- $\mu$  is the **shift**.



# Digital Straight Segment (DSS)

Periodic structure

Construction guided by Euclid

Fully Subtractiv

New algorithms Definition

A **digital straight segment** is a finite and connected subset of a digital line.



Construction guided by Euclid

Fully Subtractive

New algorithms Definition ([Feschet, Tougne 99]) The tangential cover of a discrete shape is the sequence of all maximal DSS on its boundary.

### Tangential cover



Theorem ([Debled-Rennesson, Reveilles 1995][Lachaud, vialard, de Vieilleville 2007]) The computation of the tangential cover take a time in  $\mathcal{O}(n)$  where n is the number of points on the boundary of the shape.

#### Applications of the tangential cover include :

- Convexity test [Debled-Rennesson, Reiter-Doerksen 04]
- Tangent estimation [Feschet, Tougne 99],
   [Lachaud, de Vieilleville 07]

- Length estimation
   [Lachaud, de Vieilleville 07]
- Curvature estimation [Lachaud, Kerautret, Naegel 08]
- Automatic noise detection [Lachaud, Kerautret 12]

Construction guided by Euclid

Fully Subtractiv

New algorithms

## Definition ([Reveillès 91])

The digital line/plane/hyperplane  $\mathcal{P}(\mathbf{v}, \mu, \omega)$  with normal vector  $\mathbf{v} \in \mathbb{Z}^d$ , thickness  $\omega \in \mathbb{N}$  and shift  $\mu \in \mathbb{R}$  is the subset of  $\mathbb{Z}^d$  defined by:  $\mathcal{P}(\mathbf{v}, \mu, \omega) = \left\{ x \in \mathbb{Z}^d \mid 0 \le \langle x, \mathbf{v} \rangle - \mu < \omega \right\}$ 

$$\mathcal{P}((1,6),7,0) = 0 \le 1x + 6y < 7$$





Construction guided by Euclid

Fully Subtractiv

New algorithms

# Definition ([Reveillès 91])

The digital line/plane/hyperplane  $\mathcal{P}(\mathbf{v}, \mu, \omega)$  with normal vector  $\mathbf{v} \in \mathbb{Z}^d$ , thickness  $\omega \in \mathbb{N}$  and shift  $\mu \in \mathbb{R}$  is the subset of  $\mathbb{Z}^d$  defined by:  $\mathcal{P}(\mathbf{v}, \omega) = \left\{ x \in \mathbb{Z}^d \mid 0 \le \langle x, v \rangle \langle \omega \rangle \right\}$ 

$$\mathcal{P}((1,6), 7)$$
  
 $0 \le 1x + 6y < 7$ 





#### Periodic structure

Constructio guided by Euclid

Fully Subtractiv

New algorithms

#### Example with v = (-3, 1):

- $\langle x, v \rangle$  is the **height** of *x*,
- $\mathcal{P}(v,4) = \{x \in \mathbb{Z}^2 \mid 0 \le \langle x,v \rangle < 4\}.$



#### Periodic structure

Constructio guided by Euclid

Fully Subtractiv

New algorithms



- $\langle x, v \rangle$  is the **height** of *x*,
- $\mathcal{P}(v,4) = \{x \in \mathbb{Z}^2 \mid 0 \le \langle x,v \rangle < 4\}.$



•  $\langle x, v \rangle = \langle y, v \rangle \implies y - x$  is a period vector.

• A point of each height from 0 to  $||v||_1 - 1$  appear in a period.

#### Periodic structure

Construction guided by Euclid

Fully Subtractiv





 $v = (1, 2, 3), \quad \mathcal{P}(v, 6) = \{x \in \mathbb{Z}^3 \mid 0 \le \langle x, v \rangle < 6\}$ 



#### Periodic structure

Construction guided by Euclid

Fully Subtractiv

 $v = (1, 2, 3), \quad \mathcal{P}(v, 6) = \{x \in \mathbb{Z}^3 \mid 0 \le \langle x, v \rangle < 6\}$ 



#### Periodic structure

Construction guided by Euclid

Fully Subtractiv

 $v = (1, 2, 3), \quad \mathcal{P}(v, 6) = \{x \in \mathbb{Z}^3 \mid 0 \le \langle x, v \rangle < 6\}$ 



•  $\langle x, v \rangle = \langle y, v \rangle \implies y - x$  is a period vector.

## Periodic structure

Construction guided by Euclid

Fully Subtractiv

#### Periodic structure

Construction guided by Euclid

Fully Subtractiv

New algorithms

#### Definition

A set of points  $S \subset \mathbb{Z}^d$  provided with a set of vectors  $(b_i)_{i=1}^n \in \mathbb{Z}^d$ covers an infinite set  $\Omega \subset \mathbb{Z}^d$  if

$$\Omega = \bigcup_{x \in \mathbb{Z}b_1 + \mathbb{Z}b_2 + \ldots + \mathbb{Z}b_n} (S + x).$$

(Like a tiling without a disjoint union.)

#### Example :



provided with vector v = (3, 1) covers the digital line  $\mathcal{P}((-3, 1), 4)$ .

#### Periodic structure

Constructio guided by Euclid

Fully Subtractiv

New algorithms • A point  $x \in \mathcal{P}(v, ||v||_1)$  is a **upper leaning point**, noted **UL**, if its height  $\langle x, v \rangle$  is maximal.



#### Periodic structure

Construction guided by Euclid

Fully Subtractiv

- A point  $x \in \mathcal{P}(v, ||v||_1)$  is a **upper leaning point**, noted **UL**, if its height  $\langle x, v \rangle$  is maximal.
- The **main pattern** of a digital line is a set of points bounded by two consecutive upper leaning points.



#### Periodic structure

Construction guided by Euclid

Fully Subtractiv

- A point  $x \in \mathcal{P}(v, ||v||_1)$  is a **upper leaning point**, noted **UL**, if its height  $\langle x, v \rangle$  is maximal.
- The **main pattern** of a digital line is a set of points bounded by two consecutive upper leaning points.
- Let v be the vector defined by two consecutive UL, a main pattern provided with v covers its digital line.



#### Periodic structure

Construction guided by Euclid

Fully Subtractiv

New algorithms

- O : upper leaning points.
- Let *H* be the highest point among  $\{\bullet\}$ .

Main pattern of slope 2/5.



#### Periodic structure

Construction guided by Euclid

Fully Subtractiv

- O : upper leaning points.
- Let *H* be the highest point among  $\{\bullet\}$ .





#### Periodic structure

Construction guided by Euclid

Fully Subtractiv

- O : upper leaning points.
- Let *H* be the highest point among  $\{\bullet\}$ .



#### Periodic structure

Constructior guided by Euclid

Fully Subtractiv

New algorithms

- O : upper leaning points.
- Let *H* be the highest point among  $\{\bullet\}$ .



## Main pattern of slope 2/5.

#### Periodic structure

Construction guided by Euclid

Fully Subtractiv

New algorithms



• Let *H* be the highest point among  $\{\bullet\}$ .



## Stern-Brocot Tree

#### Periodic structure

Construction guided by Euclid

Fully Subtracti

New algorithms



Stern-Brocot tree.



Every irreducible fraction appears exactly once in the Stern-Brocot tree.

Construction guided by Euclid

Fully Subtractiv

New algorithms

#### Stern-Brocot tree



# Euclid Algorithm

| Euclid         |               |
|----------------|---------------|
| algorithm      | Approximation |
|                |               |
| ( <u>7</u> ,9) | (1, 1)        |
| $\downarrow$   | $\downarrow$  |
| (7, <u>2</u> ) | (1,2)         |
| $\downarrow$   | $\downarrow$  |
| (5, <u>2</u> ) | (2,3)         |
| $\downarrow$   | $\downarrow$  |
| (3, <u>2</u> ) | (3,4)         |
| $\downarrow$   | $\downarrow$  |
| ( <u>1</u> ,2) | (4,5)         |
| $\downarrow$   | $\downarrow$  |
| (1, 1)         | (7,9)         |

### Matricial view

#### Periodic structure

Construction guided by Euclid

Fully Subtractiv

New algorithms

|   | Euclid              | Approx.        |  |
|---|---------------------|----------------|--|
|   | algorithm           |                |  |
| n | Vn                  | a <sub>n</sub> |  |
| 0 | ( <u>7</u> ,9)      | (1,1)          |  |
| 1 | (7, <u>2</u> )      | (1,2)          |  |
| 2 | ↓<br>(5, <u>2</u> ) | ↓<br>(2,3)     |  |
| 3 | ↓<br>(3, <u>2</u> ) | ↓<br>(3,4)     |  |
| 4 | ↓<br>( <u>1</u> ,2) | ↓<br>(4,5)     |  |
| 5 | (1,1)               | ↓<br>(7,9)     |  |

**Euclid** algorithm Given a vector (x, y), return •  $\begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix}$  if x < y, •  $\begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$  if x > y, • stop if x = y.

Given a vector  $v \in (\mathbb{N} \setminus \{0\})^2$ , let :

• 
$$v_0 = v$$
,  
• For all  $n \ge 1$ : 
$$\begin{cases} M_n = \operatorname{Euclid}(v_{n-1}) \\ v_n = M_n v_{n-1}. \end{cases}$$

## Property

• 
$$v_n = M_n M_{n-1} \cdots M_1 v$$

• 
$$a_n = M_1^{-1} M_2^{-1} \cdots M_n^{-1} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

## Matricial view

#### Periodic structure

Construction guided by Euclid

Fully Subtractiv

New algorithms Let  $UL_0$  and  $UL_1$  be two upper leaning points of a main pattern of  $\mathcal{P}(a_n, ||a_n||_1)$  and H be the Bezout point. Let  $\alpha = UL_0 - H$  and  $\beta = UL_1 - H$ , then

$$M_1^{\top} M_2^{\top} \cdots M_n^{\top} = \left[ \alpha \beta \right]$$

$$M_1^{\top} \cdots M_n^{\top} e_1 = \alpha, \qquad M_1^{\top} \cdots M_n^{\top} e_2 = \beta.$$



## The Translation-Union Construction

#### Periodic structure

Construction guided by Euclid

Fully Subtractive

New algorithms Construction [Domenjoud, Vuillon 12]. [Berthé, Jamet, Jolivet, P. 2013] Let  $v_0 = v$ ,  $B_0 = \{0\}$  and for all n > 1let :  $M_n$ : the matrix selected from  $v_{n-1}$ ,  $v_n = M_n v_{n-1}$  $\delta_n$ : the index of the coordinate of  $v_{n-1}$ that is subtracted.  $T_n = M_1^\top \cdots M_n^\top e_{\delta_n}, \qquad (translation)$  $B_n = B_{n-1} \cup (T_n + B_{n-1}),$  (body)  $H_n = \sum_{i \in \{1, \dots, n\}} T_i$ , (highest point)  $L_n = H_n + \{M_1^\top \cdots M_n^\top e_i\}.$ (legs)

Note that:

 $H_n \in B_n,$  $L_n \cap B_n = \emptyset.$   $\bullet \in B_n, \quad \bigcirc \in L_n$ 



$$\begin{array}{c} v_2 = (1,1), \delta_2 = 2 \\ a_2 = (2,3) \\ T_2 = (-1,1) \\ H_2 = (0,1), \\ L_2 = \{(2,-1), (-1,1)\}. \end{array}$$

# 3D continued fraction algorithms

Periodic structure

Construction guided by Euclid

Fully Subtractive

New algorithms **Euclid** algorithm : given two numbers subtract the smallest to the largest.  $(7,9) \rightarrow (7,2) \rightarrow (5,2) \rightarrow (3,2) \rightarrow (1,2) \rightarrow (1,1) \rightarrow (1,0)$ 

Given three numbers :

- Selmer : subtract the smallest to the largest.  $(3,7,5) \rightarrow (3,4,5) \rightarrow (3,4,2) \rightarrow (3,2,2) \rightarrow (1,2,2) \rightarrow (1,2,0)$  .
- **Brun** : subtract the second largest to the largest.  $(3,7,5) \rightarrow (3,2,5) \rightarrow (3,2,2) \rightarrow (1,2,2) \rightarrow (1,2,0) \rightarrow (1,1,0) \rightarrow (1,0,0)$
- Fully subtractive : subtract the smallest to the two others.  $(3,7,5) \rightarrow (3,4,2) \rightarrow (1,2,2) \rightarrow (1,1,1) \rightarrow (1,0,0)$ <sup>(5)</sup>.
- **Poincaré** : subtract the smallest to the mid and the mid to the largest.

 $(\mathbf{3},\mathbf{7},\mathbf{5}) 
ightarrow (\mathbf{3},\mathbf{2},\mathbf{2}) 
ightarrow (\mathbf{1},\mathbf{2},\mathbf{0}) 
ightarrow (\mathbf{1},\mathbf{1},\mathbf{0}) 
ightarrow (\mathbf{1},\mathbf{0},\mathbf{0})$  .

• Arnoux-Rauzy : subtract the sum of the two smallest to the largest (not always possible).

 $(3, 7, 5) \rightarrow \text{impossible}.$ 

- - -

 Step 0 : v<sub>0</sub> = (6, 8, 11), a<sub>0</sub> = (1, 1, 1), Construction Let  $v_0 = v$ ,  $B_0 = \{0\}$  and for all n > 1let :  $M_n$ : the matrix selected from  $v_{n-1}$ , 8  $v_n = M_n v_{n-1}$ • Step 1 :  $v_1 = (6, 2, 5), a_1 = (1, 2, 2).$  $\delta_n$ : the index of the coordinate of  $v_{n-1}$ that is subtracted.  $T_n = M_1^\top \cdots M_n^\top e_{\delta_n}, \qquad (translation)$  $B_n = B_{n-1} \cup (T_n + B_{n-1}),$ (body) 8  $H_n = \sum_{i \in \{1,...,n\}} T_i$ , (highest point) • Step 2 :  $v_2 = (4, 2, 3), a_2 = (2, 3, 4),$  $L_n = H_n + \{M_1^\top \cdots M_n^\top e_i\}.$  (legs) 10

Fully Subtractive

#### Example : Fully Subtractive v = (6, 8, 11)

construction guided by Euclid

Fully Subtractive

New algorithms

Example : Fully Subtractive v = (6, 8, 11)



• Step 4 :  $v_4 = (1, 1, 1)$ ,  $a_4 = (6, 8, 11)$ ,



Construction guided by Euclid

Fully Subtractive

New algorithms



Expected properties of the pattern:

- Connected.
- Provides period vectors.
- Covers  $\mathcal{P}(\mathbf{v}, \omega)$  with these vectors.
- Should be as small as possible, to avoid redundancy.



# Example, Fully Subtractive v = (6, 8, 13)• Step 0 : $v_0 = (6, 8, 13)$ , $a_0 = (1, 1, 1)$ , • Step 1 : $v_1 = (6, 2, 7), a_1 = (1, 2, 2),$ • Step 2 : $v_2 = (4, 2, 5), a_2 = (2, 3, 4),$ • Step 3 : $v_3 = (2, 2, 3), a_3 = (3, 4, 6),$ • Step 4 : $v_4 = (2, 0, 1), a_4 = (5, 7, 11),$

Fully Subtractive

#### 20/26

Construction guided by Euclid

Fully Subtractive

New algorithms Definition Let  $\mathcal{K}$  be the set of vectors v such  $\mathbf{FS}^{N}(v) = (1, 1, 1)$  for some  $N \ge 1$ .

Let  $v \in (\mathbb{N} \setminus \{0\})^3$  with gcd(v) = 1 and (a, b, c) = sort(v) (i.e.  $a \le b \le c$ ), two conditions:

(1) If 
$$a + b \le c$$
 then let  $(a', b', c') = \operatorname{sort}(\mathsf{FS}(v))$  then  $a' + b' \le c'$   
Example :  $(2, 3, 6) \xrightarrow{\mathsf{FS}} (2, 1, 4) \xrightarrow{\mathsf{FS}} (1, 1, 3) \xrightarrow{\mathsf{FS}} (1, 0, 2).$ 

(2) If a = b < c, then one coordinate of **FS**(v) is 0.

 $\mathsf{Example}:\,(2,2,3)\xrightarrow{\mathsf{FS}}(2,0,1).$ 

Lemma Let  $v \in (\mathbb{N} \setminus \{0\})^3$ ,  $v \notin \mathcal{K}$  iff there exist  $n \ge 0$  such that  $FS^n(v)$ satisfies condition (1) or (2).

# The set ${\mathcal K}$



Constructio guided by Euclid

Fully Subtractive



## New generalized continued fraction algorithms

Idea : If the vector *looks good*, use **FS**, otherwise use some thing else. . . like **Brun** or **Selmer**.

Periodic structure

Constructio guided by Euclid

Fully Subtractiv

## New generalized continued fraction algorithms

Idea : If the vector looks good, use  $\ensuremath{\mathsf{FS}}$  , otherwise use some thing else. . . like  $\ensuremath{\mathsf{Brun}}$  or  $\ensuremath{\mathsf{Selmer}}$  .

| Algorithm <b>FSB</b>                        |  |
|---------------------------------------------|--|
| Input : $v \in \mathbb{N}^3$ .              |  |
| If v satisfies (1) or (2) then<br>Use Brun. |  |
| else                                        |  |
| Use <b>FS</b> .                             |  |
| end if                                      |  |

| Algorithm <b>FSS</b>                          |  |  |
|-----------------------------------------------|--|--|
| Input : $\nu \in \mathbb{N}^3$ .              |  |  |
| If v satisfies (1) or (2) then<br>Use Selmer. |  |  |
| else                                          |  |  |
| Use <b>FS</b> .                               |  |  |
| end if                                        |  |  |

Constructio guided by Euclid

Fully Subtractiv

guided by Euclid

Fully Subtractiv











#### Theorem

Using the algorithm **FSB** or **FSS**, for all vector  $v \in (\mathbb{N} \setminus \{0\})^3$  with gcd(v) = 1,

- **1**  $\exists N \text{ such that } v_N = (1, 1, 1).$
- **2** Vectors of  $L_N$  have same height, providing period vectors.
- **3**  $B_N \cup L_N$  is connected.

**4** 
$$B_N \cup L_N$$
 covers  $\mathcal{P}(\mathbf{v}, \omega)$  with  $\frac{\|\mathbf{v}\|_1}{2} \leq \omega < \|\mathbf{v}\|_1$ .



Periodic tructure

Construction guided by Euclid

Fully Subtractiv

## Conclusion



# $\mathcal{P}((9, 15, 11), 23)$



Good:

- Build a pattern that covers a digital plane for any rational normal vector.
- Construction is recursive and based on continued fractions algorithms.
- Generalizes Voss' *splitting formula* (equiv. *standard factorization* of Christoffel words) to higher dimensions.

Problems: Open questions :

- Find a gcd algorithm that builds minimal patterns.
- Control the height of the pattern.
- Control the anisotropy of the patterns (avoid stretched forms in favor of *potato-likeness*).
- Apply recursive structure to image analysis algorithms.