Génération de plans discrets par des algorithmes de fractions continues, le cas rationnel
D. Jamet, N. Lafrenière, X. Provençal

Dyna3S
Jeudi le 10 novembre, Paris

Arithmetic digital line

Definition (Reveillès (1991), Kovalev (1990))

An arithmetic digital line is the set :

$$
\mathcal{D}((a, b), \mu)=\left\{(x, y) \in \mathbb{Z}^{2}|0 \leq a x+b y+\mu<|a|+|b|\}\right.
$$

where

- (a, b) is the normal vector,
- $-b / a$ is the slope,
- μ is the shift.

$\mathcal{D}((-3,8), 0)$

Digital Straight Segment (DSS)

Definition
 A digital straight segment is a finite and connected subset of a digital line.

Tangential cover

Definition ([Feschet, Tougne 99])

The tangential cover of a discrete shape is the sequence of all maximal DSS on its boundary.

Theorem ([Debled-Rennesson, Reveilles 1995][Lachaud, vialard, de Vieilleville 2007]) The computation of the tangential cover take a time in $\mathcal{O}(n)$ where n is the number of points on the boundary of the shape.

Applications of the tangential cover include :

- Convexity test
[Debled-Rennesson, Reiter-Doerksen 04]
- Tangent estimation
[Feschet, Tougne 99],
[Lachaud, de Vieilleville 07]
- Length estimation
[Lachaud, de Vieilleville 07]
- Curvature estimation
[Lachaud, Kerautret, Naegel 08]
- Automatic noise detection
[Lachaud, Kerautret 12]

Tangeantial cover

Theorem ([Lachaud, Kerautret 2012])
Let S be a simply conected shape in \mathbb{R}^{2} with a piecewise C^{3} boundary. Let $\left(L_{j}^{h}\right)$ be the lengths of DSS covering a point P on $\operatorname{Dig}_{h}(S)$, then :

- If P is in a strictly convex or concave area:

$$
\Omega\left(1 / h^{1 / 3}\right) \leq L_{j}^{h} \leq \mathcal{O}\left(1 / h^{1 / 2}\right)
$$

- If P is in a null curvature area:

$$
\Omega(1 / h) \leq L_{j}^{h} \leq \mathcal{O}(1 / h) .
$$

Digital lines and planes

Definition ([Reveillès 91])
The digital line/plane/hyperplane $\mathcal{P}(v, \mu, \omega)$ with normal vector $v \in \mathbb{Z}^{d}$, thickness $\omega \in \mathbb{N}$ and shift $\mu \in \mathbb{R}$ is the subset of \mathbb{Z}^{d} defined by:

$$
\mathcal{P}(v, \mu, \omega)=\left\{x \in \mathbb{Z}^{d} \mid 0 \leq\langle x, v\rangle-\mu<\omega\right\}
$$

$$
\begin{gathered}
\mathcal{P}((1,6), 7,0) \\
0 \leq 1 x+6 y<7
\end{gathered}
$$

Digital lines and planes

Definition ([Reveillès 91])
The digital line/plane/hyperplane $\mathcal{P}(v, \mu, \omega)$ with normal vector $v \in \mathbb{Z}^{d}$, thickness $\omega \in \mathbb{N}$ and shift $\mu \in \mathbb{R}$ is the subset of \mathbb{Z}^{d} defined by:

$$
\mathcal{P}(v, \omega)=\left\{x \in \mathbb{Z}^{d} \mid 0 \leq\langle x, v\rangle<\omega\right\}
$$

$$
\begin{gathered}
\mathcal{P}((1,6), 7) \\
0 \leq 1 x+6 y<7
\end{gathered}
$$

Periodic structure of a digital line
Example with $v=(-3,1)$:

- $\langle x, v\rangle$ is the height of x,
- $\mathcal{P}(v, 4)=\left\{x \in \mathbb{Z}^{2} \mid 0 \leq\langle x, v\rangle<4\right\}$.

Periodic structure of a digital line

Example with $v=(-3,1)$:

- $\langle x, v\rangle$ is the height of x,
- $\mathcal{P}(v, 4)=\left\{x \in \mathbb{Z}^{2} \mid 0 \leq\langle x, v\rangle<4\right\}$.

- $\langle x, v\rangle=\langle y, v\rangle \Longrightarrow y-x$ is a period vector.
- A point of each height from 0 to $\|v\|_{1}-1$ appear in a period.

Periodic structure of a digital plane

$$
v=(1,2,3), \quad \mathcal{P}(v, 6)=\left\{x \in \mathbb{Z}^{3} \mid 0 \leq\langle x, v\rangle<6\right\}
$$

Periodic structure of a digital plane

$$
v=(1,2,3), \quad \mathcal{P}(v, 6)=\left\{x \in \mathbb{Z}^{3} \mid 0 \leq\langle x, v\rangle<6\right\}
$$

Periodic structure of a digital plane

$$
v=(1,2,3), \quad \mathcal{P}(v, 6)=\left\{x \in \mathbb{Z}^{3} \mid 0 \leq\langle x, v\rangle<6\right\}
$$

Periodic structure of a digital plane

$$
v=(1,2,3), \quad \mathcal{P}(v, 6)=\left\{x \in \mathbb{Z}^{3} \mid 0 \leq\langle x, v\rangle<6\right\}
$$

- $\langle x, v\rangle=\langle y, v\rangle \Longrightarrow y-x$ is a period vector.
- A point of each height from 0 to $\|v\|_{1}-1$ appears in a period.
- $\langle x, v\rangle=\langle y, v\rangle=\langle z, v\rangle \Longrightarrow(y-x) \times(z-x)=\lambda v$.

Periodic structure of a digital line

Definition

A set of points $S \subset \mathbb{Z}^{d}$ provided with a set of vectors $\left(b_{i}\right)_{i=1}^{n} \in \mathbb{Z}^{d}$ spans an infinite set $\Omega \subset \mathbb{Z}^{d}$ if

$$
\Omega=\bigcup_{x \in \mathbb{Z} b_{1}+\mathbb{Z} b_{2}+\ldots+\mathbb{Z} b_{n}}(S+x)
$$

(Like a tiling without a disjoint union.)
Example:

The set :

provided with vector $v=(3,1)$ spans the digital line $\mathcal{P}((-3,1), 4)$.

Main pattern of a digital line

- A point $x \in \mathcal{P}\left(v,\|v\|_{1}\right)$ is a upper leaning point, noted UL, if its height $\langle x, v\rangle$ is maximal.

Main pattern of a digital line

- A point $x \in \mathcal{P}\left(v,\|v\|_{1}\right)$ is a upper leaning point, noted UL, if its height $\langle x, v\rangle$ is maximal.
- The main pattern of a digital line is a set of points bounded by two consecutive upper leaning points.

Main pattern of a digital line

- A point $x \in \mathcal{P}\left(v,\|v\|_{1}\right)$ is a upper leaning point, noted UL, if its height $\langle x, v\rangle$ is maximal.
- The main pattern of a digital line is a set of points bounded by two consecutive upper leaning points.
- Let v be the vector defined by two consecutive UL, a main pattern provided with v spans its digital line.

Christoffel words

Definition ([Christoffel 1875])

A Christoffel work codes the digital immediately under the segment joining two integer points.

Christoffel word of slope 2/5: 0001001

Christoffel words

Definition ([Christoffel 1875])

A Christoffel work codes the digital immediately under the segment joining two integer points.

Christoffel word of slope $2 / 5$: 0001001.

Theorem ([Borel, Laubie 93])
Every Christoffel word, other than 0 and 1, is written in a unique way as a product of two Christoffel words.

This is called the standard factorization, noted $w=(u, v)$.

Christoffel words

Definition ([Christoffel 1875])

A Christoffel work codes the digital immediately under the segment joining two integer points.

Christoffel word of slope $2 / 5: 0001001=(0001,001)$.
Theorem ([Borel, Laubie 93])
Every Christoffel word, other than 0 and 1, is written in a unique way as a product of two Christoffel words.

This is called the standard factorization, noted $w=(u, v)$.

Christoffel Tree

If (u, v) is a standard factorization, then $(u, u v)$ and ($u v, v$) are standard factorizations of Christoffel words.

Christoffel Tree

If (u, v) is a standard factorization, then $(u, u v)$ and ($u v, v$) are standard factorizations of Christoffel words.

The Christoffel Tree is the tree obtained, starting from (0,1), using the rule :

Theorem

Every Christoffel word appears exactly once in the Christoffel Tree.

Stern-Brocot Tree

Christoffel tree

Stern-Brocot tree.

Every irreducible fraction appears exactly once in the Stern-Brocot tree.

Main pattern of a digital line

- O: upper leaning points.
- Let H be the highest point among $\{0\}$.

$$
(u, v): \text { slope } 2 / 5
$$

Main pattern of a digital line

- O: upper leaning points.
- Let H be the highest point among $\{0\}$.

$$
(u, v): \text { slope } 2 / 5
$$

Main pattern of a digital line

- O: upper leaning points.
- Let H be the highest point among $\{0\}$.

Main pattern of a digital line

- O: upper leaning points.
- Let H be the highest point among $\{0\}$.

$$
(u, v): \text { slope } 2 / 5
$$

Main pattern of a digital line

- O: upper leaning points.
- Let H be the highest point among $\{0\}$.

$$
(u, v): \text { slope } 2 / 5
$$

(u,uv) : slope 3/7.

$(u v, v)$: slope 3/8.

Stern-Brocot Tree

Stern-Brocot tree.

Every irreducible fraction appears exactly once in the Stern-Brocot tree.

Euclid Algorithm

Stern-Brocot tree

Euclid algorithm

$$
\begin{gathered}
(\underline{7}, 9) \\
\downarrow \\
(7, \underline{2}) \\
\downarrow
\end{gathered}
$$

$(5, \underline{2})$ \downarrow
$(3,2)$
\downarrow
$(\underline{1}, 2)$ \downarrow
$(1,1)$

Approximation
$(1,1)$
\downarrow
$(1,2)$ \downarrow
$(2,3)$
\downarrow
$(3,4)$ \downarrow
$(4,5)$ \downarrow
$(7,9)$

Matricial view

	Euclid algorithm	Approx.
n	v_{n}	a_{n}
0	$(\underline{7}, 9)$	$(1,1)$
	\downarrow	\downarrow
1	$(7, \underline{2})$	$(1,2)$
	\downarrow	\downarrow
2	$(5, \underline{2})$	$(2,3)$
	\downarrow	\downarrow
3	$(3,2)$	$(3,4)$
	\downarrow	\downarrow
4	$(\underline{1}, 2)$	$(4,5)$
	\downarrow	\downarrow
5	$(1,1)$	$(7,9)$

Euclid algorithm

Given a vector (x, y), return

- $\left[\begin{array}{rr}1 & 0 \\ -1 & 1\end{array}\right]$ if $x<y$,
- $\left[\begin{array}{rr}1 & -1 \\ 0 & 1\end{array}\right]$ if $x>y$,
- stop if $x=y$.

Given a vector $v \in(\mathbb{N} \backslash\{0\})^{2}$, let :

- $v_{0}=v$,
- For all $n \geq 1:\left\{\begin{array}{l}M_{n}=\operatorname{Euclid}\left(v_{n-1}\right) \\ v_{n}=M_{n} v_{n-1} .\end{array}\right.$

Property

- $v_{n}=M_{n} M_{n-1} \cdots M_{1} v$
- $a_{n}=M_{1}^{-1} M_{2}^{-1} \cdots M_{n}^{-1}\binom{1}{1}$

Matricial view

Let $U L_{0}$ and $U L_{1}$ be two upper leaning points of a main pattern of $\mathcal{P}\left(a_{n},\left\|a_{n}\right\|_{1}\right)$ and H be the Bezout point. Let $\alpha=U L_{0}-H$ and $\beta=$ $U L_{1}-H$, then

$$
M_{1}^{\top} M_{2}^{\top} \cdots M_{n}^{\top}=[\alpha \beta]
$$

$$
M_{1}^{\top} \cdots M_{n}^{\top} e_{1}=\alpha, \quad M_{1}^{\top} \cdots M_{n}^{\top} e_{2}=\beta
$$

The Translation-Union Construction

Construction

[Domenjoud, Vuillon 12],
[Berthé, Jamet, Jolivet, P. 2013]
Let $v_{0}=v, B_{0}=\{0\}$ and for all $n \geq 1$ let :
M_{n} : the matrix selected from v_{n-1},

$$
v_{n}=M_{n} v_{n-1}
$$

δ_{n} : the index of the coordinate of v_{n-1} that is subtracted,

$$
T_{n}=M_{1}^{\top} \cdots M_{n}^{\top} e_{\delta_{n}},
$$

(translation)

$$
B_{n}=B_{n-1} \cup\left(T_{n}+B_{n-1}\right),
$$

(body)
$H_{n}=\sum_{i \in\{1, \ldots, n\}} T_{i}, \quad$ (highest point)
$L_{n}=H_{n}+\left\{M_{1}^{\top} \cdots M_{n}^{\top} e_{i}\right\}$.
(legs)

Note that:
$H_{n} \in B_{n}$,
$L_{n} \cap B_{n}=\emptyset$.
$\bullet \in B_{n}, \quad O \in L_{n}$

$$
\begin{aligned}
& v_{0}=(2,3), \\
& a_{0}=(1,1) \\
& H_{0}=(0,0), \\
& L_{0}=\{(1,0),(0,1)\} .
\end{aligned}
$$

$$
\begin{aligned}
& v_{1}=(2,1), \delta_{1}=1 \\
& a_{1}=(1,2) \\
& T_{1}=(1,0) \\
& H_{1}=(1,0), \\
& L_{1}=\{(2,0),(0,1)\} .
\end{aligned}
$$

$$
\begin{aligned}
& v_{2}=(1,1), \delta_{2}=2 \\
& a_{2}=(2,3) \\
& T_{2}=(-1,1) \\
& H_{2}=(0,1), \\
& L_{2}=\{(2,-1),(-1,1)\} .
\end{aligned}
$$

3D continued fraction algorithms

Euclid algorithm : given two numbers subtract the smallest to the largest.
$(7,9) \rightarrow(7,2) \rightarrow(5,2) \rightarrow(3,2) \rightarrow(1,2) \rightarrow(1,1) \rightarrow(1,0) \smile$

Given three numbers:

- Selmer : subtract the smallest to the largest.

$$
(3,7,5) \rightarrow(3,4,5) \rightarrow(3,4,2) \rightarrow(3,2,2) \rightarrow(1,2,2) \rightarrow(1,2,0) \bigcirc .
$$

- Brun : subtract the second largest to the largest.
$(3,7,5) \rightarrow(3,2,5) \rightarrow(3,2,2) \rightarrow(1,2,2) \rightarrow(1,2,0) \rightarrow(1,1,0) \rightarrow$ $(1,0,0) \bigcirc$.
- Fully subtractive : subtract the smallest to the two others.
$(3,7,5) \rightarrow(3,4,2) \rightarrow(1,2,2) \rightarrow(1,1,1) \rightarrow(1,0,0) \bigcirc$.
- Poincaré : subtract the smallest to the mid and the mid to the largest.
$(3,7,5) \rightarrow(3,2,2) \rightarrow(1,2,0) \rightarrow(1,1,0) \rightarrow(1,0,0) \smile$
- Arnoux-Rauzy : subtract the sum of the two smallest to the largest (not always possible).
$(3,7,5) \rightarrow$ impossible.

Example: Fully Subtractive $v=(6,8,11)$

Construction

Let $v_{0}=v, B_{0}=\{0\}$ and for all $n \geq 1$ let :
M_{n} : the matrix selected from v_{n-1},
$v_{n}=M_{n} v_{n-1}$
δ_{n} : the index of the coordinate of v_{n-1} that is subtracted,
$T_{n}=M_{1}^{\top} \cdots M_{n}^{\top} e_{\delta_{n}}$,
(translation)
$B_{n}=B_{n-1} \cup\left(T_{n}+B_{n-1}\right)$,
(body)
$H_{n}=\sum_{i \in\{1, \ldots, n\}} T_{i}, \quad$ (highest point)
$L_{n}=H_{n}+\left\{M_{1}^{\top} \cdots M_{n}^{\top} e_{i}\right\}$.
(legs)

- Step $0: v_{0}=(6,8,11), a_{0}=(1,1,1)$,

- Step 1: $v_{1}=(6,2,5), a_{1}=(1,2,2)$,

- Step $2: v_{2}=(4,2,3), a_{2}=(2,3,4)$,

Example : Fully Subtractive $v=(6,8,11)$

- Step $3: v_{3}=(2,2,1), a_{3}=(3,4,6)$,

- Step $4: v_{4}=(1,1,1), a_{4}=(6,8,11)$,

Expected properties of the pattern:

- Connected.
- Provides period vectors.
- Spans $\mathcal{P}(v, \omega)$ with these vectors.
- Should be as small as possible, to avoid redundancy.

$$
\mathcal{P}((6,8,11), 13)
$$

Example, Fully Subtractive $v=(6,8,13)$

- Step $0: v_{0}=(6,8,13), a_{0}=(1,1,1)$,
- Step $1: v_{1}=(6,2,7), a_{1}=(1,2,2)$,

- Step $2: v_{2}=(4,2,5), a_{2}=(2,3,4)$,
- Step $3: v_{3}=(2,2,3), a_{3}=(3,4,6)$,

- Step $4: v_{4}=(2,0,1), a_{4}=(5,7,11)$,

Let $v \in(\mathbb{N} \backslash\{0\})^{3}$ with $\operatorname{gcd}(v)=1$ and $(a, b, c)=\operatorname{sort}(v)$ (i.e. $\left.a \leq b \leq c\right)$:

- If $a+b \leq c$ then let $\left(a^{\prime}, b^{\prime}, c^{\prime}\right)=\operatorname{sort}(\mathbf{F S}(v))$ then $a^{\prime}+b^{\prime} \leq c^{\prime}$.
- If $a=b<c$, then one coordinate of $\operatorname{FS}(v)$ is 0 .

Definition

Let $(a, b, c)=\operatorname{sort}(v)$, the vector v satisfies the condition happy fully if $a+b>c$ and $a \neq b$.

Definition
Let \mathcal{K} be the set of vectors v such $\mathbf{F S}^{N}(v)=(1,1,1)$ for some $N \geq 1$.

Lemma

Let $v \in(\mathbb{N} \backslash\{0\})^{3}, v \notin \mathcal{K}$ iff there exists $n \geq 0$ such that $\boldsymbol{F S}^{n}(v)$ does not satisfy happy fully.

The set \mathcal{K}

$$
v \xrightarrow{\mathrm{FS}} \cdots \xrightarrow{\mathrm{FS}}(1,1,1)
$$

$(0,1,0)$

New generalized continued fraction algorithms

Let \mathbf{X} denote algorithm Brun or Selmer.

New generalized continued fraction algorithms

Let \mathbf{X} denote algorithm Brun or Selmer.

Algorithm FSX
Input $: \quad v \in \mathbb{N}^{3}$.
If v satisfies happy fully then Use $F S$. else Use X. end if

Example using FSB, $v=(9,15,11) \notin \mathcal{K}$

$$
\begin{aligned}
& v_{0}=(9,15,11) \\
& a_{0}=(1,1,1)
\end{aligned} \quad \xrightarrow{\text { FS }} \quad \begin{aligned}
& v_{1}=(9,6,2) \\
& a_{1}=(1,2,2)
\end{aligned} \quad \xrightarrow{\text { Brun }} \quad \begin{aligned}
& v_{2}=(3,6,2) \\
& a_{2}=(2,3,3)
\end{aligned}
$$

$$
\begin{array}{ll}
\text { Brun } & \begin{array}{l}
v_{3}=(3,3,2) \\
a_{3}
\end{array}=(3,5,4)
\end{array}
$$

$$
\begin{array}{ll}
& \begin{array}{l}
v_{4}
\end{array}=(1,1,2) \\
& a_{4}=(6,10,7)
\end{array}
$$

Theorem

Using the algorithm FSB or FSS, for all vector $v \in(\mathbb{N} \backslash\{0\})^{3}$ with $\operatorname{gcd}(v)=1$,
(1) $\exists N$ such that $v_{N}=(1,1,1)$.
(2) Vectors of L_{N} have same height, providing period vectors.
(3) $B_{N} \cup L_{N}$ is connected.
(4) $B_{N} \cup L_{N}$ spans $\mathcal{P}(v, \omega)$ with $\frac{\|v\|_{1}}{2} \leq \omega<\|v\|_{1}$.
$\xrightarrow{\text { Brun }}$

Conclusion

Good:

- Build a pattern that spans a digital plane for any rational normal vector.
- Construction is recursive and based on continued fractions algorithms.
- Generalizes Voss' splitting formula (equiv. standard factorization of Christoffel words) to higher dimensions.

Problems: Open questions :

- Find a gcd algorithm that builds minimal patterns.
- Control the height of the pattern.
- Control the anisotropy of the patterns (avoid stretched forms in favor of potato-likeness).
- Apply recursive structure to image analysis algorithms.

