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Arithmetic digital line

Definition (Reveillès (1991), Kovalev (1990))
An arithmetic digital line is the set :

D((a, b), µ) = {(x , y) ∈ Z2 | 0 ≤ ax + by + µ < |a|+ |b|}
where

• (a, b) is the normal vector,
• −b/a is the slope,
• µ is the shift.

D((−3, 8), 0) D((−2, 7), 0)
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Digital Straight Segment (DSS)

Definition
A digital straight segment is a finite and connected subset of a
digital line.
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Tangential cover

Definition ([Feschet, Tougne 99])
The tangential cover of a discrete
shape is the sequence of all maximal
DSS on its boundary.

Theorem ([Debled-Rennesson, Reveilles 1995][Lachaud, vialard, de Vieilleville 2007])
The computation of the tangential cover take a time in O(n) where n is the
number of points on the boundary of the shape.

Applications of the tangential cover include :
• Convexity test

[Debled-Rennesson, Reiter-Doerksen 04]

• Tangent estimation
[Feschet, Tougne 99],
[Lachaud, de Vieilleville 07]

• Length estimation
[Lachaud, de Vieilleville 07]

• Curvature estimation
[Lachaud, Kerautret, Naegel 08]

• Automatic noise detection
[Lachaud, Kerautret 12]
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Tangeantial cover

Theorem ([Lachaud, Kerautret 2012])
Let S be a simply conected shape in R2 with a piecewise C 3 boundary.
Let (Lh

j ) be the lengths of DSS covering a point P on Digh(S), then :
• If P is in a strictly convex or concave area:

Ω(1/h1/3) ≤ Lh
j ≤ O(1/h1/2).

• If P is in a null curvature area:

Ω(1/h) ≤ Lh
j ≤ O(1/h).
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Digital lines and planes

Definition ([Reveillès 91])
The digital line/plane/hyperplane P(v , µ, ω) with normal vector
v ∈ Zd , thickness ω ∈ N and shift µ ∈ R is the subset of Zd defined
by:

P(v , µ, ω) =
{

x ∈ Zd | 0 ≤ 〈x , v〉 − µ < ω
}

P((1, 6), 7, 0)

0 ≤ 1x + 6y < 7
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Periodic structure of a digital line
Example with v = (−3, 1):

• 〈x , v〉 is the height of x ,
• P(v , 4) = {x ∈ Z2 | 0 ≤ 〈x , v〉 < 4}.

〈x, v〉 = 0
〈x, v〉 = 1
〈x, v〉 = 2
〈x, v〉 = 3
〈x, v〉 = 4

• 〈x , v〉 = 〈y , v〉 =⇒ y − x is a period vector.
• A point of each height from 0 to ‖v‖1 − 1 appear in a period.
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Periodic structure of a digital plane

v = (1, 2, 3), P(v , 6) = {x ∈ Z3 | 0 ≤ 〈x , v〉 < 6}
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Periodic structure of a digital plane

v = (1, 2, 3), P(v , 6) = {x ∈ Z3 | 0 ≤ 〈x , v〉 < 6}

• 〈x , v〉 = 〈y , v〉 =⇒ y − x is a period vector.

• A point of each height from 0 to ‖v‖1 − 1 appears in a period.

• 〈x , v〉 = 〈y , v〉 = 〈z, v〉 =⇒ (y − x)× (z − x) = λv .
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Periodic structure of a digital line

Definition
A set of points S ⊂ Zd provided with a set of vectors (bi )

n
i=1 ∈ Zd

spans an infinite set Ω ⊂ Zd if

Ω =
⋃

x∈Zb1+Zb2+...+Zbn

(S + x).

(Like a tiling without a disjoint union.)

Example :

The set : v

provided with vector v = (3, 1) spans the digital line P((−3, 1), 4).
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Main pattern of a digital line

• A point x ∈ P(v , ‖v‖1) is a upper leaning point, noted UL, if its height
〈x , v〉 is maximal.

• The main pattern of a digital line is a set of points bounded by two
consecutive upper leaning points.

• Let v be the vector defined by two consecutive UL, a main pattern
provided with v spans its digital line.

UL

UL

UL

Main pattern
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Christoffel words

Definition ([Christoffel 1875])
A Christoffel work codes the digital immediately under the segment joining
two integer points.

UL

UL

0 0 0

10 0

1

Christoffel word of slope 2/5 : 0001001

Theorem ([Borel, Laubie 93])
Every Christoffel word, other than 0 and 1, is written in a unique way as a
product of two Christoffel words.

This is called the standard factorization, noted w = (u, v).
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Christoffel words

Definition ([Christoffel 1875])
A Christoffel work codes the digital immediately under the segment joining
two integer points.

UL

UL

0 0 0

10 0

1

Christoffel word of slope 2/5 : 0001001 = (0001, 001).

Theorem ([Borel, Laubie 93])
Every Christoffel word, other than 0 and 1, is written in a unique way as a
product of two Christoffel words.

This is called the standard factorization, noted w = (u, v).
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Christoffel Tree
If (u, v) is a standard factorization, then (u, uv) and (uv , v) are standard
factorizations of Christoffel words.

The Christoffel Tree is the tree obtained, starting from (0, 1), using
the rule : (u, v)

(u, uv) (uv , v)

Theorem
Every Christoffel word appears exactly once in the Christoffel Tree.

(0, 1)

(0, 01) (01, 1)

(0, 001) (001, 01) (01, 011) (011, 1)

(0, 0001) (0001, 001) (001, 00101) (00101, 01) (01, 01011) (01011, 011) (011, 0111) (0111, 1)
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Stern-Brocot Tree

Christoffel tree

(0, 1)
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(0, 001) (001, 01) (01, 011) (011, 1)

(· · · )(· · · )(· · · )(· · · )(· · · )(· · · )(· · · )(· · · )

Stern-Brocot tree.
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Every irreducible fraction appears exactly once in the Stern-Brocot tree.
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Main pattern of a digital line

• : upper leaning points.
• Let H be the highest point among { }.

(u, v) : slope 2/5.

H

(u, uv) : slope 3/7. (uv , v) : slope 3/8.
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Euclid Algorithm
Stern-Brocot tree
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Euclid
algorithm

(7, 9)

↓

(7, 2)

↓

(5, 2)

↓

(3, 2)

↓

(1, 2)

↓

(1, 1)

Approximation

(1, 1)

↓

(1, 2)

↓

(2, 3)

↓

(3, 4)

↓

(4, 5)

↓

(7, 9)
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Matricial view

Euclid
algorithm Approx.

n vn an

0 (7, 9) (1, 1)

↓ ↓
1 (7, 2) (1, 2)

↓ ↓
2 (5, 2) (2, 3)

↓ ↓
3 (3, 2) (3, 4)

↓ ↓
4 (1, 2) (4, 5)

↓ ↓
5 (1, 1) (7, 9)

Euclid algorithm
Given a vector (x , y), return

•
[

1 0
−1 1

]
if x < y ,

•
[

1 −1
0 1

]
if x > y ,

• stop if x = y .

Given a vector v ∈ (N \ {0})2, let :
• v0 = v ,

• For all n ≥ 1 :
{

Mn = Euclid(vn−1)
vn = Mnvn−1.

Property
• vn = MnMn−1 · · ·M1v

• an = M−1
1 M−1

2 · · ·M−1
n
(

1
1
)
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Matricial view

Let UL0 and UL1 be two upper leaning points of a main pattern of
P(an, ‖an‖1) and H be the Bezout point. Let α = UL0 − H and β =
UL1 − H, then

M>1 M>2 · · ·M>n =
[
α β

]
M>1 · · ·M>n e1 = α, M>1 · · ·M>n e2 = β.

H
β

α
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The Translation-Union Construction

Construction
[Domenjoud,Vuillon 12],
[Berthé, Jamet, Jolivet, P. 2013]

Let v0 = v , B0 = {0} and for all n ≥ 1
let :

Mn : the matrix selected from vn−1,

vn = Mnvn−1

δn : the index of the coordinate of vn−1
that is subtracted,

Tn = M>1 · · ·M>n eδn , (translation)

Bn = Bn−1 ∪ (Tn + Bn−1), (body)

Hn =
∑

i∈{1,...,n} Ti , (highest point)

Ln = Hn + {M>1 · · ·M>n ei}. (legs)

Note that:
Hn ∈ Bn,
Ln ∩ Bn = ∅.

∈ Bn, ∈ Ln

v0 = (2, 3),
a0 = (1, 1)
H0 = (0, 0),
L0 = {(1, 0), (0, 1)}.

v1 = (2, 1), δ1 = 1
a1 = (1, 2)
T1 = (1, 0)
H1 = (1, 0),
L1 = {(2, 0), (0, 1)}.

v2 = (1, 1), δ2 = 2
a2 = (2, 3)
T2 = (−1, 1)
H2 = (0, 1),
L2 = {(2,−1), (−1, 1)}.
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3D continued fraction algorithms
Euclid algorithm : given two numbers subtract the smallest to the
largest.
(7, 9) → (7, 2) → (5, 2) → (3, 2) → (1, 2) → (1, 1) → (1, 0)

Given three numbers :
• Selmer : subtract the smallest to the largest.

(3, 7, 5) → (3, 4, 5) → (3, 4, 2) → (3, 2, 2) → (1, 2, 2) → (1, 2, 0) .

• Brun : subtract the second largest to the largest.
(3, 7, 5) → (3, 2, 5) → (3, 2, 2) → (1, 2, 2) → (1, 2, 0) → (1, 1, 0) →
(1, 0, 0) .

• Fully subtractive : subtract the smallest to the two others.
(3, 7, 5) → (3, 4, 2) → (1, 2, 2) → (1, 1, 1) → (1, 0, 0) .

• Poincaré : subtract the smallest to the mid and the mid to the
largest.
(3, 7, 5) → (3, 2, 2) → (1, 2, 0) → (1, 1, 0) → (1, 0, 0) .

• Arnoux-Rauzy : subtract the sum of the two smallest to the
largest (not always possible).
(3, 7, 5) → impossible.

• . . .
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Example : Fully Subtractive v = (6, 8, 11)

Construction

Let v0 = v , B0 = {0} and for all n ≥ 1
let :

Mn : the matrix selected from vn−1,

vn = Mnvn−1

δn : the index of the coordinate of vn−1
that is subtracted,

Tn = M>1 · · ·M>n eδn , (translation)

Bn = Bn−1 ∪ (Tn + Bn−1), (body)

Hn =
∑

i∈{1,...,n} Ti , (highest point)

Ln = Hn + {M>1 · · ·M>n ei}. (legs)

• Step 0 : v0 = (6, 8, 11), a0 = (1, 1, 1),

• Step 1 : v1 = (6, 2, 5), a1 = (1, 2, 2),

• Step 2 : v2 = (4, 2, 3), a2 = (2, 3, 4),
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Example : Fully Subtractive v = (6, 8, 11)

• Step 3 : v3 = (2, 2, 1), a3 = (3, 4, 6),

• Step 4 : v4 = (1, 1, 1), a4 = (6, 8, 11),
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Expected properties of the pattern:
• Connected.
• Provides period vectors.
• Spans P(v , ω) with these vectors.
• Should be as small as possible, to

avoid redundancy.
P((6, 8, 11), 13)
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Example, Fully Subtractive v = (6, 8, 13)

• Step 0 : v0 = (6, 8, 13), a0 = (1, 1, 1),

• Step 2 : v2 = (4, 2, 5), a2 = (2, 3, 4),

• Step 1 : v1 = (6, 2, 7), a1 = (1, 2, 2),

• Step 3 : v3 = (2, 2, 3), a3 = (3, 4, 6),

• Step 4 : v4 = (2, 0, 1), a4 = (5, 7, 11),
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Fully Subtractive

Let v ∈ (N \ {0})3 with gcd(v) = 1 and (a, b, c) = sort(v) (i.e. a ≤ b ≤ c) :
• If a + b ≤ c then let (a′, b′, c ′) = sort(FS(v)) then a′ + b′ ≤ c ′.

• If a = b < c, then one coordinate of FS(v) is 0.

Definition
Let (a, b, c) = sort(v), the vector v satisfies the condition happy fully
if a + b > c and a 6= b.

Definition
Let K be the set of vectors v such FSN (v) = (1, 1, 1) for some N ≥ 1.

Lemma
Let v ∈ (N \ {0})3, v 6∈ K iff there exists n ≥ 0 such that FSn(v) does
not satisfy happy fully.
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The set K

v FS−→ · · · FS−→ (1, 1, 1)

(0, 0, 1)

(1, 0, 0) (0, 1, 0)
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New generalized continued fraction algorithms

Let X denote algorithm Brun or Selmer.

Algorithm FSX

Input : v ∈ N3.

If v satisfies happy fully then
Use FS.

else
Use X.

end if
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Example using FSB, v = (9, 15, 11) 6∈ K

v0 = (9, 15, 11)
a0 = (1, 1, 1)

FS−−→
v1 = (9, 6, 2)
a1 = (1, 2, 2)

Brun−−−→
v2 = (3, 6, 2)
a2 = (2, 3, 3)

Brun−−−→
v3 = (3, 3, 2)
a3 = (3, 5, 4)

FS−−→
v4 = (1, 1, 2)
a4 = (6, 10, 7)
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Theorem
Using the algorithm FSB or FSS, for all vector v ∈ (N \ {0})3 with
gcd(v) = 1,

1 ∃N such that vN = (1, 1, 1).
2 Vectors of LN have same height, providing period vectors.
3 BN ∪ LN is connected.
4 BN ∪ LN spans P(v , ω) with ‖v‖1

2 ≤ ω < ‖v‖1.

Brun−−→
v5 = (1, 1, 1)
a5 = (9, 15, 11)



31/1

Conclusion

P((9, 15, 11), 23)

Good:
• Build a pattern that spans a digital plane for any

rational normal vector.
• Construction is recursive and based on continued

fractions algorithms.
• Generalizes Voss’ splitting formula (equiv.

standard factorization of Christoffel words) to
higher dimensions.

Problems: Open questions :
• Find a gcd algorithm that builds minimal patterns.
• Control the height of the pattern.
• Control the anisotropy of the patterns (avoid

stretched forms in favor of potato-likeness).
• Apply recursive structure to image analysis

algorithms.
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