Generation of digital planes using generalized continued-fractions algorithms
D. Jamet, N. Lafrenière, X. Provençal

DGCI 2016
April 18th, Nantes

Digital lines and planes

Definition ([Reveillès 91])
The digital line/plane/hyperplane $\mathcal{P}(v, \mu, \omega)$ with normal vector $v \in \mathbb{Z}^{d}$, thickness $\omega \in \mathbb{N}$ and shift $\mu \in \mathbb{R}$ is the subset of \mathbb{Z}^{d} defined by:

$$
\mathcal{P}(v, \mu, \omega)=\left\{x \in \mathbb{Z}^{d} \mid 0 \leq\langle x, v\rangle-\mu<\omega\right\}
$$

$$
\begin{gathered}
\mathcal{P}((1,6), 7,0) \\
0 \leq 1 x+6 y<7
\end{gathered}
$$

Digital lines and planes

Definition ([Reveillès 91])
The digital line/plane/hyperplane $\mathcal{P}(v, \mu, \omega)$ with normal vector $v \in \mathbb{Z}^{d}$, thickness $\omega \in \mathbb{N}$ and shift $\mu \in \mathbb{R}$ is the subset of \mathbb{Z}^{d} defined by:

$$
\mathcal{P}(v, \omega)=\left\{x \in \mathbb{Z}^{d} \mid 0 \leq\langle x, v\rangle<\omega\right\}
$$

$$
\begin{gathered}
\mathcal{P}((1,6), 7) \\
0 \leq 1 x+6 y<7
\end{gathered}
$$

Periodic structure of a digital line
guided by Euclid

Using Fully Subtractive

Example with $v=(-3,1)$:

- $\langle x, v\rangle$ is the height of x,
- $\mathcal{P}(v, 4)=\left\{x \in \mathbb{Z}^{2} \mid 0 \leq\langle x, v\rangle<4\right\}$.

Periodic structure of a digital line
Example with $v=(-3,1)$:

- $\langle x, v\rangle$ is the height of x,
- $\mathcal{P}(v, 4)=\left\{x \in \mathbb{Z}^{2} \mid 0 \leq\langle x, v\rangle<4\right\}$.

- $\langle x, v\rangle=\langle y, v\rangle \Longrightarrow y-x$ is a period vector.
- A point of each height from 0 to $\|v\|_{1}-1$ appear in a period.

Periodic structure of a digital plane

$$
v=(1,2,3), \quad \mathcal{P}(v, 6)=\left\{x \in \mathbb{Z}^{3} \mid 0 \leq\langle x, v\rangle<6\right\}
$$

Periodic structure of a digital plane

$$
v=(1,2,3), \quad \mathcal{P}(v, 6)=\left\{x \in \mathbb{Z}^{3} \mid 0 \leq\langle x, v\rangle<6\right\}
$$

Periodic structure of a digital plane

$$
v=(1,2,3), \quad \mathcal{P}(v, 6)=\left\{x \in \mathbb{Z}^{3} \mid 0 \leq\langle x, v\rangle<6\right\}
$$

Periodic structure of a digital plane

$$
v=(1,2,3), \quad \mathcal{P}(v, 6)=\left\{x \in \mathbb{Z}^{3} \mid 0 \leq\langle x, v\rangle<6\right\}
$$

- $\langle x, v\rangle=\langle y, v\rangle \Longrightarrow y-x$ is a period vector.

Periodic structure of a digital line

Definition

A set of points $S \subset \mathbb{Z}^{d}$ provided with a set of vectors $\left(b_{i}\right)_{i=1}^{n} \in \mathbb{Z}^{d}$ spans an infinite set $\Omega \subset \mathbb{Z}^{d}$ if

$$
\Omega=\bigcup_{x \in \mathbb{Z} b_{1}+\mathbb{Z} b_{2}+\ldots+\mathbb{Z} b_{n}}(S+x)
$$

(Like a tiling without a disjoint union.)
Example:

The set :

provided with vector $v=(3,1)$ spans the digital line $\mathcal{P}((-3,1), 4)$.

Main pattern of a digital line

- A point $x \in \mathcal{P}\left(v,\|v\|_{1}\right)$ is a upper leaning point, noted UL, if its height, $\langle x, v\rangle$ is maximal.

Main pattern of a digital line

- A point $x \in \mathcal{P}\left(v,\|v\|_{1}\right)$ is a upper leaning point, noted UL, if its height, $\langle x, v\rangle$ is maximal.
- The main pattern of a digital line is a set of points bounded by two consecutive upper leaning points.

Main pattern of a digital line

- A point $x \in \mathcal{P}\left(v,\|v\|_{1}\right)$ is a upper leaning point, noted UL, if its height, $\langle x, v\rangle$ is maximal.
- The main pattern of a digital line is a set of points bounded by two consecutive upper leaning points.
- Let v be the vector defined by two consecutive UL, a main pattern provided with v spans its digital line.

Main pattern of a digital line

- O: upper leaning points.
- Let H be the highest point among $\{\bullet\}$, a Bezout point.

Main pattern for slope $2 / 5$.

Main pattern of a digital line

- O: upper leaning points.
- Let H be the highest point among $\{\bullet\}$, a Bezout point.

Main pattern for slope $2 / 5$.

Main pattern of a digital line

- O: upper leaning points.
- Let H be the highest point among $\{\bullet\}$, a Bezout point.

Main pattern for slope $2 / 5$.

Main pattern of a digital line

- O: upper leaning points.
- Let H be the highest point among $\{\bullet\}$, a Bezout point.

Main pattern for slope $2 / 5$.

Main pattern for slope 3/8.

Main pattern of a digital line

- O: upper leaning points.
- Let H be the highest point among $\{\bullet\}$, a Bezout point.

Main pattern for slope $2 / 5$.

Main pattern for slope 3/7.

Main pattern for slope 3/8.

Stern-Brocot Tree

structure

Construction

Stern-Brocot tree.

Every irreducible fraction appears exactly once in the Stern-Brocot tree.

Euclid Algorithm

Stern-Brocot tree

Construction guided by Euclid

Using Fully Subtractive algorithms

Euclid algorithm
$(\underline{7}, 9)$
\downarrow
$(7, \underline{2})$
\downarrow
$(1,1)$
\downarrow
$(1,2)$ \downarrow
$(5, \underline{2})$
\downarrow
$(3,2)$
\downarrow
$(\underline{1}, 2)$ \downarrow
$(1,1)$

Approximation
$(2,3)$
\downarrow
$(3,4)$ \downarrow
$(4,5)$ \downarrow
$(7,9)$

Matricial view

 Euclid| | Euclid
 algorithm | Approx. |
| :---: | :---: | :---: |
| n | v_{n} | a_{n} |
| 0 | $(\underline{7}, 9)$ | $(1,1)$ |
| | \downarrow | \downarrow |
| 1 | $(7, \underline{2})$ | $(1,2)$ |
| | \downarrow | \downarrow |
| 2 | $(5, \underline{2})$ | $(2,3)$ |
| | \downarrow | \downarrow |
| 3 | $(3, \underline{2})$ | $(3,4)$ |
| | \downarrow | \downarrow |
| 4 | $(\underline{1}, 2)$ | $(4,5)$ |
| | \downarrow | \downarrow |
| 5 | $(1,1)$ | $(7,9)$ |

Euclid algorithm

Given a vector (x, y), return

- $\left[\begin{array}{rr}1 & 0 \\ -1 & 1\end{array}\right]$ if $x<y$,
- $\left[\begin{array}{rr}1 & -1 \\ 0 & 1\end{array}\right]$ if $x>y$,
- stop if $x=y$.

Given a vector $v \in(\mathbb{N} \backslash\{0\})^{2}$, let :

- $v_{0}=v$,
- For all $n \geq 1:\left\{\begin{array}{l}M_{n}=\operatorname{Euclid}\left(v_{n-1}\right) \\ v_{n}=M_{n} v_{n-1} .\end{array}\right.$

Matricial view

		Euclid algorithm	Approx.
Using Fuly	n	v_{n}	a_{n}
Newalgorithms	0	$(7,9)$	$(1,1)$
	1	$\begin{gathered} \downarrow \\ (7, \underline{2}) \end{gathered}$	$\begin{gathered} \downarrow \\ (1,2) \end{gathered}$
	2	$\begin{gathered} \downarrow \\ (5, \underline{2}) \end{gathered}$	$\begin{gathered} \downarrow \\ (2,3) \end{gathered}$
	3	$\begin{gathered} \downarrow \\ (3, \underline{2}) \end{gathered}$	$\begin{gathered} \downarrow \\ (3,4) \end{gathered}$
	4	$\begin{gathered} \downarrow \\ (\underline{1}, 2) \end{gathered}$	$\begin{gathered} \downarrow \\ (4,5) \end{gathered}$
	5	$\begin{gathered} \downarrow \\ (1,1) \end{gathered}$	$\begin{gathered} \downarrow \\ (7,9) \end{gathered}$

Euclid algorithm

Given a vector (x, y), return

- $\left[\begin{array}{rr}1 & 0 \\ -1 & 1\end{array}\right]$ if $x<y$,
- $\left[\begin{array}{rr}1 & -1 \\ 0 & 1\end{array}\right]$ if $x>y$,
- stop if $x=y$.

Given a vector $v \in(\mathbb{N} \backslash\{0\})^{2}$, let :

- $v_{0}=v$,
- For all $n \geq 1:\left\{\begin{array}{l}M_{n}=\operatorname{Euclid}\left(v_{n-1}\right) \\ v_{n}=M_{n} v_{n-1} .\end{array}\right.$

Property

- $v_{n}=M_{n} M_{n-1} \cdots M_{1} v$
- $a_{n}=M_{1}^{-1} M_{2}^{-1} \cdots M_{n}^{-1}\binom{1}{1}$

Matricial view

Let $U L_{0}$ and $U L_{1}$ be two upper leaning points of a main pattern of $\mathcal{P}\left(a_{n},\left\|a_{n}\right\|_{1}\right)$ and H be the Bezout point. Let $\alpha=U L_{0}-H$ and $\beta=$ $U L_{1}-H$, then

$$
M_{1}^{\top} M_{2}^{\top} \cdots M_{n}^{\top}=[\alpha \beta]
$$

$$
M_{1}^{\top} \cdots M_{n}^{\top} e_{1}=\alpha, \quad M_{1}^{\top} \cdots M_{n}^{\top} e_{2}=\beta
$$

The Translation-Union Construction

Construction

[Domenjoud, Vuillon 12],
[Berthé, Jamet, Jolivet, P. 2013]
Let $v_{0}=v, B_{0}=\{0\}$ and for all $n \geq 1$ let:
M_{n} : the matrix selected from v_{n-1},

$$
v_{n}=M_{n} v_{n-1}
$$

δ_{n} : the index of the coordinate of v_{n-1} that is subtracted,

$$
\begin{equation*}
T_{n}=M_{1}^{\top} \cdots M_{n}^{\top} e_{\delta_{n}}, \tag{translation}
\end{equation*}
$$

$$
\begin{equation*}
B_{n}=B_{n-1} \cup\left(T_{n}+B_{n-1}\right), \tag{body}
\end{equation*}
$$

$$
H_{n}=\sum_{i \in\{1, \ldots, n\}} T_{i}, \quad \text { (highest point) }
$$

$$
\begin{equation*}
L_{n}=H_{n}+\left\{M_{1}^{\top} \cdots M_{n}^{\top} e_{i}\right\} \tag{legs}
\end{equation*}
$$

Note that:
$H_{n} \in B_{n}$,
$L_{n} \cap B_{n}=\emptyset$.
$\bullet \in B_{n}, \quad O \in L_{n}$

$$
\begin{aligned}
& v_{0}=(2,3), \\
& a_{0}=(1,1) \\
& H_{0}=(0,0) \\
& L_{0}=\{(1,0),(0,1)\}
\end{aligned}
$$

$$
\begin{aligned}
& v_{1}=(2,1), \delta_{1}=1 \\
& a_{1}=(1,2) \\
& T_{1}=(1,0) \\
& H_{1}=(1,0), \\
& L_{1}=\{(2,0),(0,1)\} .
\end{aligned}
$$

$$
\begin{aligned}
& v_{2}=(1,1), \delta_{2}=2 \\
& a_{2}=(2,3) \\
& T_{2}=(-1,1) \\
& H_{2}=(0,1), \\
& L_{2}=\{(2,-1),(-1,1)\} .
\end{aligned}
$$

3D continued fraction algorithms

Euclid algorithm : given two number subtract the smaller to the larger. $(7,9) \rightarrow(7,2) \rightarrow(5,2) \rightarrow(3,2) \rightarrow(1,2) \rightarrow(1,1) \rightarrow(1,0) \smile$

Euclid algorithm : given two number subtract the smaller to the larger. $(7,9) \rightarrow(7,2) \rightarrow(5,2) \rightarrow(3,2) \rightarrow(1,2) \rightarrow(1,1) \rightarrow(1,0) \smile$

Given three numbers :

- Selmer : subtract the smallest to the largest.

$$
(3,7,5) \rightarrow(3,4,5) \rightarrow(3,4,2) \rightarrow(3,2,2) \rightarrow(1,2,2) \rightarrow(1,2,0) \bigcirc .
$$

- Brun : subtract the second largest to the largest. $(3,7,5) \rightarrow(3,2,5) \rightarrow(3,2,2) \rightarrow(1,2,2) \rightarrow(1,2,0) \rightarrow(1,1,0) \rightarrow$ $(1,0,0) \smile$.
- Fully subtractive : subtract the smallest to the two others.

$$
(3,7,5) \rightarrow(3,4,2) \rightarrow(1,2,2) \rightarrow(1,1,1) \rightarrow(1,0,0) \smile .
$$

- Poincaré : subtract the smallest to the mid and the mid to the largest.

$$
(3,7,5) \rightarrow(3,2,2) \rightarrow(1,2,0) \rightarrow(1,1,0) \rightarrow(1,0,0) \bigcirc .
$$

- Arnoux-Rauzy : subtract the sum of the two smallest to the largest (not always possible).
$(3,7,5) \rightarrow$ impossible.

Example : Fully Subtractive $v=(6,8,11)$

Construction

Let $v_{0}=v, B_{0}=\{0\}$ and for all $n \geq 1$ let :
M_{n} : the matrix selected from v_{n-1},
$v_{n}=M_{n} v_{n-1}$
δ_{n} : the index of the coordinate of v_{n-1} that is subtracted,

$$
T_{n}=M_{1}^{\top} \cdots M_{n}^{\top} e_{\delta_{n}},
$$

(translation)

$$
B_{n}=B_{n-1} \cup\left(T_{n}+B_{n-1}\right),
$$

(body)
$H_{n}=\sum_{i \in\{1, \ldots, n\}} T_{i}, \quad$ (highest point)
$L_{n}=H_{n}+\left\{M_{1}^{\top} \cdots M_{n}^{\top} e_{i}\right\}$.
(legs)

- Step $0: v_{0}=(6,8,11), a_{0}=(1,1,1)$,

- Step 1: $v_{1}=(6,2,5), a_{1}=(1,2,2)$,

- Step $2: v_{2}=(4,2,3), a_{2}=(2,3,4)$,

Example : Fully Subtractive $v=(6,8,11)$

- Step $3: v_{3}=(2,2,1), a_{3}=(3,4,6)$,

- Step 4 : $v_{4}=(1,1,1), a_{4}=(6,8,11)$,

Periodic structure

Construction guided by Euclid

Using Fully Subtractive

New

algorithms

Expected properties of the pattern:

- Connected.
- Provides period vectors.
- Spans $\mathcal{P}(v, \omega)$ with these vectors.
- Should be as small as possible, to avoid redundancy.

$$
\mathcal{P}((6,8,11), 13)
$$

Example, Fully Subtractive $v=(6,8,13)$

- Step $0: v_{0}=(6,8,13), a_{0}=(1,1,1)$,
- Step $1: v_{1}=(6,2,7), a_{1}=(1,2,2)$,

- Step $2: v_{2}=(4,2,5), a_{2}=(2,3,4)$,
- Step $3: v_{3}=(2,2,3), a_{3}=(3,4,6)$,

- Step $4: v_{4}=(2,0,1), a_{4}=(5,7,11)$,

Fully Subtractive

Definition

Let \mathcal{K} be the set of vectors v such $\mathbf{F S}^{N}(v)=(1,1,1)$ for some $N \geq 1$.

Let $v \in(\mathbb{N} \backslash\{0\})^{3}$ with $\operatorname{gcd}(v)=1$ and $(a, b, c)=\operatorname{sort}(v)$ (i.e. $\left.a \leq b \leq c\right)$, two conditions:
(1) If $a+b \leq c$ then let $\left(a^{\prime}, b^{\prime}, c^{\prime}\right)=\operatorname{sort}(\mathbf{F S}(v))$ then $a^{\prime}+b^{\prime} \leq c^{\prime}$.

Example : $(2,3,6) \xrightarrow{\mathrm{FS}}(2,1,4) \xrightarrow{\mathrm{FS}}(1,1,3) \xrightarrow{\mathrm{FS}}(1,0,2)$.
(2) If $a=b<c$, then one coordinate of $\operatorname{FS}(v)$ is 0 .

Example : $(2,2,3) \xrightarrow{\text { FS }}(2,0,1)$.

Lemma
Let $v \in(\mathbb{N} \backslash\{0\})^{3}, v \notin \mathcal{K}$ iff there exist $n \geq 0$ such that $\boldsymbol{F S}^{n}(v)$ satisfies condition (1) or (2).

The set \mathcal{K}

$$
v \xrightarrow{\mathrm{FS}} \cdots \xrightarrow{\mathrm{FS}}(1,1,1)
$$

$(0,0,1)$

New generalized continued fraction algorithms

Idea: If the vector looks good, use FS, otherwise use some thing else. . . like Brun or Selmer.

New generalized continued fraction algorithms

Idea: If the vector looks good, use FS, otherwise use some thing else. . . like Brun or Selmer.

Algorithm FSB
Input : $v \in \mathbb{N}^{3}$.
If v satisfies (1) or (2) then Use Brun. else Use FS. end if

Algorithm FSS
Input $: v \in \mathbb{N}^{3}$.
If v satisfies (1) or (2) then Use Selmer. else Use FS. end if

Example using FSB, $v=(9,15,11) \notin \mathcal{K}$

$$
\begin{aligned}
& v_{0}=(9,15,11) \\
& a_{0}=(1,1,1)
\end{aligned}
$$

$$
\begin{array}{ll}
\\
\xrightarrow{\text { FS }} & \begin{array}{l}
v_{1}=(9,6,2) \\
a_{1}
\end{array}=(1,2,2)
\end{array}
$$

$\xrightarrow{\text { Brun }}$

$$
\begin{aligned}
& v_{2}=(3,6,2) \\
& a_{2}=(2,3,3)
\end{aligned}
$$

$$
a_{2}=(2,3,3)
$$

$$
\begin{array}{ll}
\text { Brun } & \begin{array}{l}
v_{3}
\end{array}=(3,3,2) \\
a_{3} & =(3,5,4)
\end{array}
$$

$$
\begin{array}{ll}
\text { FS } & \begin{array}{l}
v_{4}
\end{array}=(1,1,2) \\
a_{4} & =(6,10,7)
\end{array}
$$

Theorem

Using the algorithm FSB or FSS, for all vector $v \in(\mathbb{N} \backslash\{0\})^{3}$ with $\operatorname{gcd}(v)=1$,
(1) $\exists N$ such that $v_{N}=(1,1,1)$.
(2) Vectors of L_{N} have same height, providing period vectors.
(3) $B_{N} \cup L_{N}$ is connected.
(4) $B_{N} \cup L_{N}$ spans $\mathcal{P}(v, \omega)$ with $\frac{\|v\|_{1}}{2} \leq \omega \leq\|v\|_{1}$.

Brun

Conclusion

$\mathcal{P}((9,15,11), 23)$

Problems: Open questions :

- Find a gcd algorithm that builds minimal patterns.
- Control the height of the pattern.
- Control the anisotropy of the patterns (avoid stretched forms in favor of potato-likeness).
- Apply recursive structure to image analysis algorithms.

