Generation of digital planes using generalized continued-fractions algorithms

D. Jamet, N. Lafrenière, X. Provençal

DGCI 2016 April 18th, Nantes

Digital lines and planes

Periodic

Construction guided by Euclid

Using Fully Subtractive

algorithm

Definition ([Reveillès 91])

The digital line/plane/hyperplane $\mathcal{P}(v,\mu,\omega)$ with normal vector $v\in\mathbb{Z}^d$, thickness $\omega\in\mathbb{N}$ and shift $\mu\in\mathbb{R}$ is the subset of \mathbb{Z}^d defined by:

$$\mathcal{P}(\mathbf{v}, \mu, \omega) = \left\{ x \in \mathbb{Z}^d \mid 0 \le \langle x, \mathbf{v} \rangle - \mu < \omega \right\}$$

Digital lines and planes

Periodic

Construction guided by Euclid

Using Fully Subtractive

algorithm

Definition ([Reveillès 91])

The digital line/plane/hyperplane $\mathcal{P}(v,\mu,\omega)$ with normal vector $v\in\mathbb{Z}^d$, thickness $\omega\in\mathbb{N}$ and shift $\mu\in\mathbb{R}$ is the subset of \mathbb{Z}^d defined by:

$$\mathcal{P}(v,\omega) = \{x \in \mathbb{Z}^d \mid 0 \le \langle x,v \rangle < \omega \}$$

Periodic structure of a digital line

Periodic structure

Construction guided by Euclid

Using Fully Subtractive

algorithm

Example with v = (-3, 1):

- $\langle x, v \rangle$ is the **height** of x,
- $\mathcal{P}(v,4) = \{x \in \mathbb{Z}^2 \mid 0 \le \langle x,v \rangle < 4\}.$

Periodic structure of a digital line

Periodic structure

Construction guided by Euclid

Using Fully Subtractive

New algorithm Example with v = (-3, 1):

- $\langle x, v \rangle$ is the **height** of x,
- $\mathcal{P}(v,4) = \{x \in \mathbb{Z}^2 \mid 0 \le \langle x,v \rangle < 4\}.$

- $\langle x, v \rangle = \langle y, v \rangle \implies y x$ is a period vector.
- A point of each height from 0 to $||v||_1 1$ appear in a period.

Periodic structure of a digital plane

Periodic structure

Construction guided by Euclid

Using Fully Subtractive

New algorithn

$$v = (1,2,3), \ \mathcal{P}(v,6) = \{x \in \mathbb{Z}^3 \mid 0 \le \langle x, v \rangle < 6\}$$

Periodic structure

Construction guided by Euclid

Using Full Subtractiv

algorithm

Periodic structure of a digital plane

Periodic structure of a digital plane

 $v = (1,2,3), \ \mathcal{P}(v,6) = \{x \in \mathbb{Z}^3 \mid 0 \le \langle x,v \rangle < 6\}$

Periodic structure

Construction guided by Euclid

Subtracti

algorithn

Periodic structure

Construction guided by Euclid

Using Ful Subtractiv

algorithm

Periodic structure of a digital plane

• $\langle x, v \rangle = \langle y, v \rangle \implies y - x$ is a period vector.

Periodic structure of a digital line

Periodic structure

Construction guided by Euclid

Using Fully Subtractive

New algorithm

Definition

A set of points $S \subset \mathbb{Z}^d$ provided with a set of vectors $(b_i)_{i=1}^n \in \mathbb{Z}^d$ spans an infinite set $\Omega \subset \mathbb{Z}^d$ if

$$\Omega = \bigcup_{x \in \mathbb{Z}b_1 + \mathbb{Z}b_2 + \ldots + \mathbb{Z}b_n} (S + x).$$

(Like a tiling without a disjoint union.)

Example:

The set :

provided with vector v = (3,1) spans the digital line $\mathcal{P}((-3,1),4)$.

Periodic structure

Construction guided by Euclid

Using Fully Subtractive

New algorithm • A point $x \in \mathcal{P}(v, ||v||_1)$ is a **upper leaning point**, noted **UL**, if its height, $\langle x, v \rangle$ is maximal.

Periodic structure

Construction guided by Euclid

Using Fully Subtractive

New algorithm

- A point $x \in \mathcal{P}(v, ||v||_1)$ is a **upper leaning point**, noted **UL**, if its height, $\langle x, v \rangle$ is maximal.
- The main pattern of a digital line is a set of points bounded by two consecutive upper leaning points.

Periodic structure

Construction guided by Euclid

Using Fully Subtractive

algorithm

- A point $x \in \mathcal{P}(v, ||v||_1)$ is a **upper leaning point**, noted **UL**, if its height, $\langle x, v \rangle$ is maximal.
- The main pattern of a digital line is a set of points bounded by two consecutive upper leaning points.
- Let v be the vector defined by two consecutive UL, a main pattern provided with v spans its digital line.

Periodic structure

Construction guided by Euclid

Using Fully Subtractive

algorithm

- O: upper leaning points.
- Let H be the highest point among $\{\bullet\}$, a **Bezout** point.

Main pattern for slope 2/5.

Periodic structure

Construction guided by Euclid

Using Fully Subtractive

algorithm

- ullet \bigcirc : upper leaning points.
- Let H be the highest point among $\{\bullet\}$, a **Bezout** point.

Main pattern for slope 2/5.

Periodic structure

Construction guided by Euclid

Subtractive

algorithm

- O: upper leaning points.
- Let H be the highest point among $\{\bullet\}$, a **Bezout** point.

Periodic structure

Construction guided by Euclid

Using Fully Subtractive

New algorithm

- O: upper leaning points.
- Let H be the highest point among $\{\bullet\}$, a **Bezout** point.

Main pattern for slope 2/5.

Main pattern for slope 3/8.

Periodic structure

Construction guided by Euclid

Using Fully Subtractive

New algorithm • O: upper leaning points.

Main pattern for slope 3/7.

• Let H be the highest point among $\{\bullet\}$, a **Bezout** point.

Main pattern for slope 2/5. Н

Main pattern for slope 3/8.

Stern-Brocot Tree

Periodic structure

Construction guided by Euclid

Using Fully Subtractive

New algorithm

Stern-Brocot tree.

Every irreducible fraction appears exactly once in the Stern-Brocot tree.

Construction guided by Euclid

Using Fully

New algorithm

Stern-Brocot tree

Euclid Algorithm

Euclid algorithm	Approximation
(<u>7</u> , 9)	(1, 1)
\downarrow	\downarrow
(7, <u>2</u>)	(1, 2)
\downarrow	↓
(5, <u>2</u>)	(2,3)
\downarrow	↓
(3, <u>2</u>)	(3,4)
\downarrow	↓
(<u>1</u> , 2)	(4,5)
\downarrow	↓
(1, 1)	(7,9)

Construction guided by Euclid

Using Fully Subtractive

New algorithm

	Euclid algorithm	Approx.
n	V _n	an
0	(<u>7</u> , 9)	(1, 1)
1	↓ (7, <u>2</u>)	↓ (1, 2)
2	↓ (5, <u>2</u>)	↓ (2,3)
	+	+
3	(3, <u>2</u>) ↓	(3, 4) ↓
4	$(\underline{1},2)$	(4,5)
5	(1,1)	↓ (7,9)

Euclid algorithm

Given a vector (x, y), return

•
$$\begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix}$$
 if $x < y$,

•
$$\begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$$
 if $x > y$,

• **stop** if x = y.

Given a vector $v \in (\mathbb{N} \setminus \{0\})^2$, let :

- $v_0 = v$,
- For all $n \ge 1$: $\begin{cases} M_n = \mathbf{Euclid}(v_{n-1}) \\ v_n = M_n v_{n-1}. \end{cases}$

Construction guided by Euclid

Using Fully Subtractive

New algorithm

	Euclid algorithm	Approx.
n	V _n	an
0	(<u>7</u> , 9)	(1, 1)
1	↓ (7, <u>2</u>)	↓ (1, 2)
2	↓ (5, <u>2</u>)	↓ (2,3)
3	↓ (3, <u>2</u>)	↓ (3, 4)
	+	+
4	(<u>1</u> , 2) ↓	(4,5) ↓
5	(1, 1)	(7,9)

Euclid algorithm

Given a vector (x, y), return

$$\bullet \left[\begin{array}{cc} 1 & 0 \\ -1 & 1 \end{array} \right] \text{ if } x < y,$$

•
$$\begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$$
 if $x > y$,

• stop if
$$x = y$$
.

Given a vector $v \in (\mathbb{N} \setminus \{0\})^2$, let :

- $v_0 = v$,
- For all $n \ge 1$: $\begin{cases} M_n = \mathbf{Euclid}(v_{n-1}) \\ v_n = M_n v_{n-1}. \end{cases}$

Property

- $v_n = M_n M_{n-1} \cdots M_1 v$
- $a_n = M_1^{-1} M_2^{-1} \cdots M_n^{-1} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$

Periodic structure

Construction guided by Euclid

Using Fully Subtractive

New algorithm Let UL_0 and UL_1 be two upper leaning points of a main pattern of $\mathcal{P}(a_n, \|a_n\|_1)$ and H be the Bezout point. Let $\alpha = UL_0 - H$ and $\beta = UL_1 - H$, then

$$M_1^\top M_2^\top \cdots M_n^\top = \left[\begin{array}{c} \alpha \ \beta \end{array} \right]$$

$$M_1^{\top} \cdots M_n^{\top} e_1 = \alpha, \qquad M_1^{\top} \cdots M_n^{\top} e_2 = \beta.$$

Н

The Translation-Union Construction

Construction guided by

Construction

[Domenjoud, Vuillon 12], [Berthé, Jamet, Jolivet, P. 2013]

Let $v_0 = v$, $B_0 = \{0\}$ and for all n > 1let:

 M_n : the matrix selected from v_{n-1} ,

$$v_n = M_n v_{n-1}$$

 δ_n : the index of the coordinate of v_{n-1} that is subtracted.

$$T_n = M_1^\top \cdots M_n^\top e_{\delta_n},$$
 (translation)

$$B_n = B_{n-1} \cup (T_n + B_{n-1}), \qquad (body)$$

$$H_n = \sum_{i \in \{1,...,n\}} T_i$$
, (highest point)

$$L_n = H_n + \{M_1^\top \cdots M_n^\top e_i\}. \tag{legs}$$

Note that:

$$H_n \in B_n$$
,
 $L_n \cap B_n = \emptyset$.

 $\bullet \in B_n$, $\bigcirc \in L_n$

$$v_0 = (2,3),$$
 $a_0 = (1,1)$
 $H_0 = (0,0),$
 $L_0 = \{(1,0),(0,1)\}.$

$$v_1 = (2,1), \delta_1 = 1$$

 $a_1 = (1,2)$
 $T_1 = (1,0)$
 $H_1 = (1,0),$
 $L_1 = \{(2,0),(0,1)\}.$

$$v_2 = (1,1), \delta_2 = 2$$
 $a_2 = (2,3)$
 $T_2 = (-1,1)$
 $H_2 = (0,1),$
 $L_2 = \{(2,-1),(-1,1)\}.$

3D continued fraction algorithms

Periodic

Construction guided by Euclid

Using Fully Subtractive

New algorithm **Euclid** algorithm : given two number subtract the smaller to the larger. $(7,9) \rightarrow (7,2) \rightarrow (5,2) \rightarrow (3,2) \rightarrow (1,2) \rightarrow (1,1) \rightarrow (1,0)$

13/23

 $\textbf{Euclid} \ \ \text{algorithm}: \ \ \text{given two number subtract the smaller to the larger}.$

$$(7,9) \to (7,2) \to (5,2) \to (3,2) \to (1,2) \to (1,1) \to (1,0)$$

Given three numbers:

• **Selmer** : subtract the smallest to the largest.

$$(3,7,5) \to (3,4,5) \to (3,4,2) \to (3,2,2) \to (1,2,2) \to (1,2,0)$$

• Brun: subtract the second largest to the largest.

$$(3,7,5) \rightarrow (3,2,5) \rightarrow (3,2,2) \rightarrow (1,2,2) \rightarrow (1,2,0) \rightarrow (1,1,0) \rightarrow (1,0,0)$$

• Fully subtractive : subtract the smallest to the two others.

$$(3,7,5) \rightarrow (3,4,2) \rightarrow (1,2,2) \rightarrow (1,1,1) \rightarrow (1,0,0)$$
.

 Poincaré: subtract the smallest to the mid and the mid to the largest.

$$(3,7,5) \rightarrow (3,2,2) \rightarrow (1,2,0) \rightarrow (1,1,0) \rightarrow (1,0,0)$$
.

- Arnoux-Rauzy: subtract the sum of the two smallest to the largest (not always possible).
 - $(3,7,5) \rightarrow \text{impossible}.$
- •

Example: Fully Subtractive v = (6, 8, 11)

Using Fully Subtractive

Construction

Let $v_0 = v$, $B_0 = \{0\}$ and for all n > 1let:

 M_n : the matrix selected from v_{n-1} ,

$$v_n = M_n v_{n-1}$$

 δ_n : the index of the coordinate of v_{n-1} that is subtracted.

$$T_n = M_1^\top \cdots M_n^\top e_{\delta_n},$$
 (translation)

$$B_n = B_{n-1} \cup (T_n + B_{n-1}), \qquad (body)$$

$$H_n = \sum_{i \in \{1,...,n\}} T_i$$
, (highest point)

$$L_n = H_n + \{M_1^\top \cdots M_n^\top e_i\}. \tag{legs}$$

• Step 0 : $v_0 = (6, 8, 11), a_0 = (1, 1, 1),$

• Step 1 : $v_1 = (6, 2, 5), a_1 = (1, 2, 2).$

• Step 2: $v_2 = (4, 2, 3), a_2 = (2, 3, 4).$

Example : Fully Subtractive v = (6, 8, 11)

structure

Construction guided by Euclid

Using Fully Subtractive

algorithm

• Step 3 : $v_3 = (2, 2, 1)$, $a_3 = (3, 4, 6)$,

• Step 4: $v_4 = (1, 1, 1), a_4 = (6, 8, 11),$

Using Fully Subtractive

Expected properties of the pattern:

- Connected.
- Provides period vectors.
- Spans $\mathcal{P}(\mathbf{v}, \omega)$ with these vectors.
- Should be as small as possible, to avoid redundancy.

Example, Fully Subtractive v = (6, 8, 13)

Construction

Using Fully Subtractive

New algorithm • Step 0 : $v_0 = (6, 8, 13), a_0 = (1, 1, 1),$

• Step 1: $v_1 = (6, 2, 7)$, $a_1 = (1, 2, 2)$,

• Step 2 : $v_2 = (4, 2, 5)$, $a_2 = (2, 3, 4)$,

• Step 3: $v_3 = (2,2,3)$, $a_3 = (3,4,6)$,

• Step 4: $v_4 = (2,0,1), a_4 = (5,7,11),$

Definition

Let K be the set of vectors v such $\mathbf{FS}^N(v) = (1,1,1)$ for some $N \ge 1$.

Let $v \in (\mathbb{N} \setminus \{0\})^3$ with gcd(v) = 1 and (a, b, c) = sort(v) (i.e. $a \le b \le c$), two conditions:

- (1) If $a + b \le c$ then let $(a', b', c') = \operatorname{sort}(\mathbf{FS}(v))$ then $a' + b' \le c'$. Example: $(2,3,6) \xrightarrow{\mathbf{FS}} (2,1,4) \xrightarrow{\mathbf{FS}} (1,1,3) \xrightarrow{\mathbf{FS}} (1,0,2)$.
- (2) If a = b < c, then one coordinate of FS(v) is 0.

Example : $(2,2,3) \xrightarrow{FS} (2,0,1)$.

Lemma

Let $v \in (\mathbb{N} \setminus \{0\})^3$, $v \notin \mathcal{K}$ iff there exist $n \ge 0$ such that $FS^n(v)$ satisfies condition (1) or (2).

The set ${\mathcal K}$

Periodic structure

Construction guided by Euclid

Using Fully Subtractive

algorithm

New generalized continued fraction algorithms

Periodic

Construction guided by Euclid

Using Fully Subtractive

New algorithms Idea: If the vector *looks good*, use FS, otherwise use some thing else...like Brun or Selmer.

New generalized continued fraction algorithms

Periodic

Construction

Using Full Subtractiv

New algorithms Idea: If the vector *looks good*, use FS, otherwise use some thing else...like Brun or Selmer.

Algorithm FSB

Input : $v \in \mathbb{N}^3$.

If v satisfies (1) or (2) then
Use Brun.
else
Use FS.
end if

Algorithm FSS

Input : $v \in \mathbb{N}^3$.

end if

If v satisfies (1) or (2) then Use Selmer.else Use FS.

Example using **FSB**, $v = (9, 15, 11) \notin \mathcal{K}$

Periodic

Construction guided by Euclid

Using Fully Subtractive

New algorithms

$$egin{aligned} v_0 &= (9,15,11) \ a_0 &= (1,1,1) \end{aligned}$$

 $\xrightarrow{\mathsf{FS}}$

$$v_1 = (9,6,2)$$

 $a_1 = (1,2,2)$

Brun

$$v_2 = (3, 6, 2)$$

 $a_2 = (2, 3, 3)$

$$v_3 = (3,3,2)$$

 $a_3 = (3,5,4)$

$$v_4 = (1, 1, 2)$$

 $a_4 = (6, 10, 7)$

Constructio guided by Euclid

Using Fully Subtractive

New algorithms

Theorem

Using the algorithm **FSB** or **FSS**, for all vector $v \in (\mathbb{N} \setminus \{0\})^3$ with gcd(v) = 1,

- **1** $\exists N \text{ such that } v_N = (1, 1, 1).$
- 2 Vectors of L_N have same height, providing period vectors.
- **③** $B_N \cup L_N$ is connected.
- **4** B_N ∪ L_N spans $\mathcal{P}(v, \omega)$ with $\frac{\|v\|_1}{2} \leq \omega \leq \|v\|_1$.

Conclusion

 $\mathcal{P}((9,15,11),23)$

Good:

- Build a pattern that spans a digital plane for any rational normal vector.
- Construction is recursive and based on continued fractions algorithms.
- Generalizes Voss' splitting formula (equiv. standard factorization of Christoffel words) to higher dimensions.

Problems: Open questions:

- Find a gcd algorithm that builds minimal patterns.
- · Control the height of the pattern.
- Control the anisotropy of the patterns (avoid stretched forms in favor of potato-likeness).
- Apply recursive structure to image analysis algorithms.