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Digital lines and planes

Definition ([Reveillès 91])
The digital hyperplane P(v , µ) with normal vector v ∈ Zd , shift
µ ∈ R is the subset of Zd defined by:

P(v , µ) =
{

x ∈ Zd | µ ≤ 〈x , v〉 < µ+ ‖v‖1
}

A digital line can be coded on two letters.
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Definition ([Reveillès 91])
The digital hyperplane P(v , µ) with normal vector v ∈ Zd , shift
µ ∈ R is the subset of Zd defined by:

P(v , µ) =
{

x ∈ Zd | µ ≤ 〈x , v〉 < µ+ ‖v‖1
}

P((1, 6), 0)

0 ≤ 1x + 6y < 7

a a a

ba a a a a a

ba a a

A digital line can be coded on two letters.
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Periodic structure of a digital line
• 〈x , v〉 is the height of x ,
• v = (−3, 1),
• P(v , 0) = {x ∈ Z2 | 0 ≤ 〈x , v〉 < 4}.

〈x, v〉 = 0〈x, v〉 = 0
〈x, v〉 = 1
〈x, v〉 = 2
〈x, v〉 = 3
〈x, v〉 = 4

• 〈x , v〉 = 〈y , v〉 =⇒ y − x is a period vector.
• A point of each height from 0 to ‖v‖1 − 1 appear in a period.
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Periodic structure of a digital plane

v = (1, 2, 3), P(v , 0) = {x ∈ Z3 | 0 ≤ 〈x , v〉 < 6}
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Christoffel words

Definition ([Christoffel 1875])
A Christoffel word codes digital path right below a segments between two
consecutive integer points

w = 00100100101 is the Christoffel word of slope 4/7.

Theorem ([Borel, Laubie 93])
Any Christoffel word, other than 0 and 1, can be written in a unique way as
a product of two Christoffel words.

This is called the standard factorization, noted w = (u, v).
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w = 001 · 00100101 is the Christoffel word of slope 4/7.

Theorem ([Borel, Laubie 93])
Any Christoffel word, other than 0 and 1, can be written in a unique way as
a product of two Christoffel words.

This is called the standard factorization, noted w = (u, v).
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Christoffel Tree
If (u, v) is a standard factorization, then (u, uv) and (uv , v) are standard
factorizations of Christoffel words.

The Christoffel Tree is the tree obtained, starting from (0, 1), using
the rule : (u, v)

(u, uv) (uv , v)

Theorem
Every Christoffel word appears exactly once in the Christoffel Tree.

(0, 1)

(0, 01) (01, 1)

(0, 001) (001, 01) (01, 011) (011, 1)

(0, 0001) (0001, 001) (001, 00101) (00101, 01) (01, 01011) (01011, 011) (011, 0111) (0111, 1)

8 / 35



Definition

Periodic
structure

Christoffel
words

Digital
convexity
test

Christoffel Tree
If (u, v) is a standard factorization, then (u, uv) and (uv , v) are standard
factorizations of Christoffel words.

The Christoffel Tree is the tree obtained, starting from (0, 1), using
the rule : (u, v)

(u, uv) (uv , v)

Theorem
Every Christoffel word appears exactly once in the Christoffel Tree.

(0, 1)

(0, 01) (01, 1)

(0, 001) (001, 01) (01, 011) (011, 1)

(0, 0001) (0001, 001) (001, 00101) (00101, 01) (01, 01011) (01011, 011) (011, 0111) (0111, 1)

8 / 35



Definition

Periodic
structure

Christoffel
words

Digital
convexity
test

Christoffel Tree
If (u, v) is a standard factorization, then (u, uv) and (uv , v) are standard
factorizations of Christoffel words.

The Christoffel Tree is the tree obtained, starting from (0, 1), using
the rule : (u, v)

(u, uv) (uv , v)

Theorem
Every Christoffel word appears exactly once in the Christoffel Tree.

(0, 1)

(0, 01) (01, 1)

(0, 001) (001, 01) (01, 011) (011, 1)

(0, 0001) (0001, 001) (001, 00101) (00101, 01) (01, 01011) (01011, 011) (011, 0111) (0111, 1)

8 / 35



Definition

Periodic
structure

Christoffel
words

Digital
convexity
test

Stern-Brocot Tree
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Every irreducible fraction appears exactly once in the Stern-Brocot tree.
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Digital convexity

Definition
A digital set D ⊂ Z d is digitally convex if

• Dig(Conv(D)) = D.

Definitions and characterizations :

• [Minsky and Papert 1969]
• [Sklansky 1970]
• [Kim, Rosenfeld 1981]
• [Hübler, Klette, Voss 1981]

• [Chassery 1983]

• . . .

• [Brlek, Lachaud, P., Reutenauer 2009]
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Nested prefixes

Corollary
A Christoffel word that admits w = (u, v) as a proper prefix, has a
prefix of the form : w k v = (w ,w k−1v).

Identifying the longest prefix that is a Christoffel word :

p1
p0

Corollary
Let word w = (u, v) and v = p1, then p0 is a prefix of w.
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Lexicographic order

Property
Lexicographic order on Christoffel words correspond to the order on
the slope

w
5/7
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the slope
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Lyndon words

Definition ([Lyndon 54])
A w is a Lyndon word iff for every proper suffix s of w ,

w <Lex s

Examples :
1 aabab is Lyndon since aabab <Lex {abab, bab, ab, b},
2 abaab is not Lyndon, since aab <Lex abaab.
3 aabaab is not Lyndon, since aab <Lex aabaab.

Theorem ([Chen, Fox, Lyndon 58])
Every word has a unique factorization as non-increasing Lyndon words

Example :
1 1 0 1 1 0 1 1 0 0 1 0 0 1 1 0 0 0

= 1 · 1 · 0 1 1 · 0 1 1 · 0 0 1 0 0 1 1 · 0 · 0 · 0
= (1)2 · (0 1 1)2 · (0 0 1 0 0 1 1)1 · (0)3.

13 / 35
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Combinatorial view of convexity

Theorem ([Brlek, Lachaud, P., Reutenauer 09])
The north-west part of a digital shape is convex iff its Lyndon
factorization contains only Christoffel words.

Sketch of the proof :
• Uniqueness of the Lyndon factorization.
• No integer points between a Christoffel word and its convex hull.

110110111010100010010000100010000
=(1)2 · 0110111 · (01)2 · 001001 · 000010001 · (0)4
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Duval algorithm
Recursive computation of the First Lyndon Prefix (FLF),

w =

1 Let l0 be a Lyndon prefix and k be it’s number of repetitions.
2 Identify at the first letter that is not that same than in l0.
3 If its smaller than l0 is FLF,

otherwise, lk
0 pb is a Lyndon word.
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2 Identify at the first letter that is not that same than in l0.
3 If its smaller than l0 is FLF, otherwise, lk

0 pb is a Lyndon word.
When comparing two different letters, let l0 = (u, v) :

• if |pb| = |v | then
a = 0 and b = 1 and l ′0 is a Christoffel word.

• if |pb| 6= |v | and a = 1 and b = 0 then
l0 is the first edge of the convex hull.

• if |pb| 6= |v | and a = 0 and b = 1 then
Shape is not convex.

15 / 35



From Euclid
to
Christoffel

Alternative
construction

Part II

Construction guided by Euclid

5 From Euclid to Christoffel

6 Alternative construction

16 / 35



From Euclid
to
Christoffel

Alternative
construction

Euclid Algorithm
Stern-Brocot tree

0
1

1
0

1
1

1
2

2
1

1
3

2
3

3
2

3
1

1
4

2
5

3
5

3
4

4
3

5
3

5
2

4
1

4
5

7
9

0
1

1
0

1
1

1
2

2
1

1
3

2
3

3
2

3
1

1
4

2
5

3
5

3
4

4
3

5
3

5
2

4
1

4
5

7
9

Euclid
algorithm

(7, 9)

↓

(7, 2)

↓

(5, 2)

↓

(3, 2)

↓

(1, 2)

↓

(1, 1)

Approximation

(1, 1)

↓

(1, 2)

↓

(2, 3)

↓

(3, 4)

↓

(4, 5)

↓

(7, 9)
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Matricial view

Euclid
algorithm Approx.

n vn an

0 (7, 9) (1, 1)
↓ ↓

1 (7, 2) (1, 2)
↓ ↓

2 (5, 2) (2, 3)
↓ ↓

3 (3, 2) (3, 4)
↓ ↓

4 (1, 2) (4, 5)
↓ ↓

5 (1, 1) (7, 9)

Euclid algorithm
Given a vector (x , y), return

•
[

1 0
−1 1

]
if x < y ,

•
[

1 −1
0 1

]
if x > y ,

• stop if x = y .

Given a vector v ∈ (N \ {0})2, let :
• v0 = v ,

• For all n ≥ 1 :
{

Mn = Euclid(vn−1)
vn = Mnvn−1.

Property
• vn = MnMn−1 · · ·M1v

• an = M−1
1 M−1

2 · · ·M−1
n
(

1
1
)
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Matricial view

Lemma
Let A,B,C be Christoffel words such that C = (A,B) and

−→
C = an.

Let
−→
A = (Ax ,Ay ),

−→
B = (Bx ,By ), then:

M>1 M>2 · · ·M>n =
[

Ax −Bx
−Ay By

]

Proof. By recurrence. True for n = 0, Id =
[

1 0
0 1

]
. Suppose true for n,

(A,B)

(A,AB) (AB,B)

M>1 · · ·M>n+1 =
[

Ax −Bx
−Ay By

][
1 −1
0 1

]
=
[

Ax −Ax − Bx
−Ay Ay + By

]
.

M>1 · · ·M>n e1 = (Ax ,−Ay )

M>1 · · ·M>n e2 = (−Bx ,By )
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The Translation-Union Construction

Construction
[Domenjoud,Vuillon 12],
[Berthé, Jamet, Jolivet, P. 2013]

Let v0 = v , B0 = {0} and for all n ≥ 1
let :

Mn : the matrix selected from vn−1,

vn = Mnvn−1

δn : the index of the coordinate of vn−1
that is subtracted,

Tn = M>1 · · ·M>n eδn , (translation)

Bn = Bn−1 ∪ (Tn + Bn−1), (body)

Hn =
∑

i∈{1,...,n} Ti , (highest point)

Ln = Hn + {M>1 · · ·M>n ei}. (legs)

Note that:
Hn ∈ Bn,
Ln ∩ Bn = ∅.

∈ Bn, ∈ Ln

v0 = (2, 3),
a0 = (1, 1)
H0 = (0, 0),
L0 = {(1, 0), (0, 1)}.

v1 = (2, 1), δ1 = 1
a1 = (1, 2)
T1 = (1, 0)
H1 = (1, 0),
L1 = {(2, 0), (0, 1)}.

v2 = (1, 1), δ2 = 2
a2 = (2, 3)
T2 = (−1, 1)
H2 = (0, 1),
L1 = {(2,−1), (−1, 1)}.
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The Translation-Union Construction

Property
The points of Bn ∪ Ln for the Christoffel word of vector an.
Moreover, let {x , y} = Ln then 〈x , an〉 = 〈y , an〉.

an = (7, 9)
∈ Ln

∈ Bn

Hn

M>1 · · ·M>n e1

M>1 · · ·M>n e2
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Part III

Generalization to higher dimensions

7 A general construction

8 The fully subtractive algorithm
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algorithm

3D continued fraction algorithms

Euclid algorithm : given two number subtract the smaller to the larger.
(7, 9)→ (7, 2)→ (5, 2)→ (3, 2)→ (1, 2)→ (1, 1)→ (1, 0)

Given three numbers :
• Selmer : subtract the smallest to the largest.

(3, 7, 5)→ (3, 4, 5)→ (3, 4, 2)→ (3, 2, 2)→ (1, 2, 2)→ (1, 2, 0)→
(1, 1, 0)→ (1, 0, 0).

• Brun : subtract the second largest to the largest.
(3, 7, 5)→ (3, 2, 5)→ (3, 2, 2)→ (1, 2, 2)→ (1, 2, 0)→ (1, 1, 0)→ (1, 0, 0).

• Fully subtractive : subtract the smallest to the two others.
(3, 7, 5)→ (3, 4, 2)→ (1, 2, 2)→ (1, 1, 1)→ (1, 0, 0).

• Poincaré : subtract the smallest to the mid and the mid to the
largest.
(3, 7, 5)→ (3, 2, 2)→ (1, 2, 0)→ (1, 1, 0)→ (1, 0, 0).

• Arnoux-Rauzy : subtract the sum of the two smallest to the
largest (not always possible).
(3, 7, 5)→ impossible.

• . . .
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The Translation-Union Construction

Construction

Let v0 = v , B0 = {0} and for all n ≥ 1
let :

Mn : the matrix selected from vn−1,

vn = Mnvn−1

δn : the index of the coordinate of vn−1
that is subtracted,

Tn = M>1 · · ·M>n eδn , (translation)

Bn = Bn−1 ∪ (Tn + Bn−1), (body)

Hn =
∑

i∈{1,...,n} Ti , (highest point)

Ln = Hn + {M>1 · · ·M>n ei}. (legs)

Property
If the action of Mn is to subtract
a coordinate to at least one other
coordinate while keeping it
positive, then Bn ∈ P(v , 0).

Proof : 〈Tn, v〉 = 〈M>1 . . .M>n eδn , v〉 =
〈eδn ,Mn · · ·M1v〉 = 〈eδn , vn〉 is equal to
the value of the coordinate that is
subtracted.

Let x ∈ Bn, then x =
∑

i∈I Ti for some
I ⊂ {1, · · · , n} and

0 ≤ 〈x , v〉 < ‖v‖1

24 / 35



A general
construction

The fully
subtractive
algorithm

The Translation-Union Construction

Construction

Let v0 = v , B0 = {0} and for all n ≥ 1
let :

Mn : the matrix selected from vn−1,

vn = Mnvn−1

δn : the index of the coordinate of vn−1
that is subtracted,

Tn = M>1 · · ·M>n eδn , (translation)

Bn = Bn−1 ∪ (Tn + Bn−1), (body)

Hn =
∑

i∈{1,...,n} Ti , (highest point)

Ln = Hn + {M>1 · · ·M>n ei}. (legs)

Property
If the action of Mn is to subtract
a coordinate to at least one other
coordinate while keeping it
positive, then Bn ∈ P(v , 0).

Proof : 〈Tn, v〉 = 〈M>1 . . .M>n eδn , v〉 =
〈eδn ,Mn · · ·M1v〉 = 〈eδn , vn〉 is equal to
the value of the coordinate that is
subtracted.

Let x ∈ Bn, then x =
∑

i∈I Ti for some
I ⊂ {1, · · · , n} and

0 ≤ 〈x , v〉 < ‖v‖1

24 / 35



A general
construction

The fully
subtractive
algorithm

Construction using fully Subtractive

The fully subtractive algorithm :

Subtract the smallest coordinate to the two others.

The matrices are :[
1 0 0
−1 1 0
−1 0 1

]
,

[
1 −1 0
0 1 0
0 −1 1

]
,

[
1 0 −1
0 1 −1
0 0 1

]

Definition
Let K be the set of vectors v such FSN(v) = (1, 1, 1) for some N ≥ 1.

• K 3 (1, 2, 2) FS−→ (1, 1, 1)

• K 63 (2, 2, 5) FS−→ (0, 2, 3)
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Tree structure

Theorem ([Domenjoud, Vuillon 12])
When using the fully subtractive algorithm, the graph of Bn is a tree.

Example : v = (136, 184, 249) ∈ K
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Recursive construction with Fully Subtractive

x y

z

Bn ∪ Ln Approx.
Fully

subtractive
algorithm

(1, 1, 1) (6, 8, 11)

(1, 2, 2) (6, 2, 5)

(2, 3, 4) (4, 2, 3)

(3, 4, 6) (2, 2, 1)

(6, 8, 11) (1, 1, 1)
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Recursive construction with Fully Subtractive

Property
Using Fully Subtractive on v ∈ K, let N be such that vN = (1, 1, 1)
and so aN = v :

1 BN ∪ LN is connected.

2 BN has exactly one point at each height from 0 to
⌊
‖v‖1

2

⌋
− 1

3 All points of LN have height
⌊
‖v‖1

2

⌋

1. Bn is a tree.
2. v = v0

FS−→ v1
FS−→ · · · FS−→ vN = (1, 1, 1)

The heigth of each Ti is equal to the coordinate that has been subtracted
to the two other coordinates.
‖vn‖1 = ‖vn−1‖1 − 2〈Tn, v〉.

3. Ln = Hn + {MT
1 · · ·MT

n ei} and
〈MT

1 · · ·MT
N ei , v〉 = 〈ei ,MN · · ·M1v〉 = 〈ei , vN〉 = 〈ei , (1, 1, 1)〉 = 1.
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From pattern to digital plane
kev = (6, 8, 11),

⌊ ‖v‖1
2

⌋
= 12
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The set K

v FS−→ · · · FS−→ (1, 1, 1)

(0, 0, 1)

(1, 0, 0) (0, 1, 0)
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Vectors not in K

Let v ∈ (N \ {0})3 such that v 6∈ K, then either :
1 FSn(v) = (g , g , g) with g ≥ 2.
2 FSn(v) = (a, a, b) with a < b so that FS((a, a, b)) = (0, a, b − a).
3 FSn(v) = (a, b, c) with a + b ≤ c.

Solution:

1 Then g = gcd(v), use v/g ∈ K.
2 Do not use FS. . .
3 Do not use FS. . .

. . . ok but what else ?
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Vectors not in K
Idea : Use hybrid algorithm, suppose a ≤ b ≤ c,

(a, b, c) =
{

FS((a, b, c)) if a 6= b and a + b ≤ c,
Brun((a, b, c)) otherwise.

Brun: subtract the second biggest coordinate to the biggest one.

(9, 15, 11) FS−−→ (9, 6, 2) Brun−−−→ (3, 6, 2)

Brun−−−→ (3, 3, 2) FS−−→ (1, 1, 2)
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The hybrid FS+Brun algorithm

Property ([Lafrenière, Jamet, P. )]

Using the hybrid FS+Brun algorithm, for all vector v ∈ (N \ {0})3

1 ∃N such that vN = (1, 1, 1) (or gcd. . . ).
2 Vectors of Ln have same height, (providing period vectors).
3 Bn ∪ Ln is connected but in general not a tree.
4
⌊ ‖v‖1

2

⌋
− 1 ≤ 〈HN〉 < ‖v‖1.

5 There is a least one point at each height from 0 to 〈HN〉 but in
general no unicity.

Brun−−→ (1, 1, 1)
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Conclusion

Good:
• Generalization of Christoffel words to higher dimensions.
• Construction is recursive and based on continued fraction algorithms.
• Construction of the periodic pattern of the digital plane for K.

Problems: Open questions :
• Provide a gcd algorithm that builds minimal patterns for KC.
• Give a geometrical interpretation of the patterns produced by the hybrid

algorihtm.
• Control the anisotropy of the patterns (avoid stretched forms in favor of

potato-likeness).
• Apply recursive structure to image analysis algorithms.
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Merci
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