Recursive structure of digital planes, a combinatorial approach based on continued fractions

Xavier Provençal
Laboratoire de Mathématiques Université Savoie Mont-Blanc

Journées Informatique et Géométrie 2015 8 octobre 2015, Paris

Outline

(1) Recursive Structure of Digital line
(2) Construction guided by Euclid
(3) Generalization to higher dimensions

Part I

Recursive Structure of Digital line

(1) Definition
(2) Periodic structure
(3) Christoffel words
(4) Digital convexity test

Digital lines and planes

Definition ([Reveillès 91])
The digital hyperplane $\mathcal{P}(v, \mu)$ with normal vector $v \in \mathbb{Z}^{d}$, shift $\mu \in \mathbb{R}$ is the subset of \mathbb{Z}^{d} defined by:

$$
\mathcal{P}(v, \mu)=\left\{x \in \mathbb{Z}^{d} \mid \mu \leq\langle x, v\rangle<\mu+\|v\|_{1}\right\}
$$

Digital lines and planes

Definition ([Reveillès 91])
The digital hyperplane $\mathcal{P}(v, \mu)$ with normal vector $v \in \mathbb{Z}^{d}$, shift $\mu \in \mathbb{R}$ is the subset of \mathbb{Z}^{d} defined by:

$$
\mathcal{P}(v, \mu)=\left\{x \in \mathbb{Z}^{d} \mid \mu \leq\langle x, v\rangle<\mu+\|v\|_{1}\right\}
$$

$$
\begin{gathered}
\mathcal{P}((1,6), 0) \\
0 \leq 1 x+6 y<7
\end{gathered}
$$

Periodic structure of a digital line

words

$$
\begin{aligned}
& \langle x, v\rangle=4 \\
& \langle x, v\rangle=3 \\
& \langle x, v\rangle=2 \\
& \langle x, v\rangle=1 \\
& \langle x, v\rangle=0
\end{aligned}
$$

Periodic structure of a digital line

- $\langle x, v\rangle$ is the height of x,
- $v=(-3,1)$,
- $\mathcal{P}(v, 0)=\left\{x \in \mathbb{Z}^{2} \mid 0 \leq\langle x, v\rangle<4\right\}$.

$$
\begin{aligned}
& \langle x, v\rangle=4 \\
& \langle x, v\rangle=3 \\
& \langle x, v\rangle=2 \\
& \langle x, v\rangle=1 \\
& \langle x, v\rangle=0
\end{aligned}
$$

- $\langle x, v\rangle=\langle y, v\rangle \Longrightarrow y-x$ is a period vector.
- A point of each height from 0 to $\|v\|_{1}-1$ appear in a period.

Periodic structure of a digital plane

$$
v=(1,2,3), \quad \mathcal{P}(v, 0)=\left\{x \in \mathbb{Z}^{3} \mid 0 \leq\langle x, v\rangle<6\right\}
$$

Periodic structure of a digital plane

$$
v=(1,2,3), \quad \mathcal{P}(v, 0)=\left\{x \in \mathbb{Z}^{3} \mid 0 \leq\langle x, v\rangle<6\right\}
$$

Periodic structure of a digital plane

structure

$$
v=(1,2,3), \quad \mathcal{P}(v, 0)=\left\{x \in \mathbb{Z}^{3} \mid 0 \leq\langle x, v\rangle<6\right\}
$$

Periodic structure of a digital plane

$$
v=(1,2,3), \quad \mathcal{P}(v, 0)=\left\{x \in \mathbb{Z}^{3} \mid 0 \leq\langle x, v\rangle<6\right\}
$$

Periodic structure of a digital plane
structure

$$
v=(1,2,3), \quad \mathcal{P}(v, 0)=\left\{x \in \mathbb{Z}^{3} \mid 0 \leq\langle x, v\rangle<6\right\}
$$

- $\langle x, v\rangle=\langle y, v\rangle \Longrightarrow y-x$ is a period vector.
- A point of each height from 0 to $\|v\|_{1}-1$ appear in a period.

Christoffel words

Definition

Definition ([Christoffel 1875])
A Christoffel word codes digital path right below a segments between two consecutive integer points

Christoffel words

Definition

Definition ([Christoffel 1875])
A Christoffel word codes digital path right below a segments between two consecutive integer points

Christoffel words

Definition ([Christoffel 1875])
A Christoffel word codes digital path right below a segments between two consecutive integer points

Christoffel words

Definition ([Christoffel 1875])
A Christoffel word codes digital path right below a segments between two consecutive integer points

$w=00100100101$ is the Christoffel word of slope 4/7.

Christoffel words

Definition ([Christoffel 1875])

A Christoffel word codes digital path right below a segments between two consecutive integer points

$w=001 \cdot 00100101$ is the Christoffel word of slope 4/7.

Theorem ([Borel, Laubie 93])
Any Christoffel word, other than 0 and 1, can be written in a unique way as a product of two Christoffel words.

This is called the standard factorization, noted $w=(u, v)$.

Christoffel Tree

If (u, v) is a standard factorization, then $(u, u v)$ and ($u v, v$) are standard factorizations of Christoffel words.

Christoffel Tree

If (u, v) is a standard factorization, then $(u, u v)$ and ($u v, v$) are standard factorizations of Christoffel words.

The Christoffel Tree is the tree obtained, starting from (0,1), using the rule :

Christoffel Tree

If (u, v) is a standard factorization, then $(u, u v)$ and ($u v, v$) are standard factorizations of Christoffel words.

The Christoffel Tree is the tree obtained, starting from (0,1), using the rule :

Theorem

Every Christoffel word appears exactly once in the Christoffel Tree.

Stern-Brocot Tree

Christoffel tree

Stern-Brocot tree.

Every irreducible fraction appears exactly once in the Stern-Brocot tree.

Stern-Brocot Tree

Christoffel tree

Stern-Brocot tree.

Every irreducible fraction appears exactly once in the Stern-Brocot tree.

Stern-Brocot Tree

Christoffel tree

Stern-Brocot tree.

Every irreducible fraction appears exactly once in the Stern-Brocot tree.

Digital convexity

Definition

A digital set $D \subset Z^{d}$ is digitally convex if

- $\operatorname{Dig}(\operatorname{Conv}(D))=D$.

Definitions and characterizations :

- [Minsky and Papert 1969]
- [Sklansky 1970]
- [Kim, Rosenfeld 1981]
- [Hübler, Klette, Voss 1981]
- [Chassery 1983]
- ...
- [Brlek, Lachaud, P., Reutenauer 2009]

Nested prefixes

Corollary

A Christoffel word that admits $w=(u, v)$ as a proper prefix, has a prefix of the form : $w^{k} v=\left(w, w^{k-1} v\right)$.

Identifying the longest prefix that is a Christoffel word:

Nested prefixes

Corollary

A Christoffel word that admits $w=(u, v)$ as a proper prefix, has a prefix of the form : $w^{k} v=\left(w, w^{k-1} v\right)$.

Identifying the longest prefix that is a Christoffel word :

W	
u	V

Nested prefixes

Corollary

A Christoffel word that admits $w=(u, v)$ as a proper prefix, has a prefix of the form : $w^{k} v=\left(w, w^{k-1} v\right)$.

Identifying the longest prefix that is a Christoffel word :

Nested prefixes

Corollary

A Christoffel word that admits $w=(u, v)$ as a proper prefix, has a prefix of the form : $w^{k} v=\left(w, w^{k-1} v\right)$.

Identifying the longest prefix that is a Christoffel word :

W^{\prime}					
W		W	V		
u	V				

Nested prefixes

Corollary

A Christoffel word that admits $w=(u, v)$ as a proper prefix, has a prefix of the form : $w^{k} v=\left(w, w^{k-1} v\right)$.

Identifying the longest prefix that is a Christoffel word :

Nested prefixes

Corollary

A Christoffel word that admits $w=(u, v)$ as a proper prefix, has a prefix of the form : $w^{k} v=\left(w, w^{k-1} v\right)$.

Identifying the longest prefix that is a Christoffel word :

Corollary

Let word $w=(u, v)$ and $v=p 1$, then $p 0$ is a prefix of w.

Lexicographic order

Definition

Property
Lexicographic order on Christoffel words correspond to the order on the slope

Lexicographic order

Definition

Property
Lexicographic order on Christoffel words correspond to the order on the slope

Lexicographic order

Definition

Property
Lexicographic order on Christoffel words correspond to the order on the slope

Lexicographic order

Definition

Property
Lexicographic order on Christoffel words correspond to the order on the slope

Definition ([Lyndon 54])

A w is a Lyndon word iff for every proper suffix s of w,

$$
w<\text { Lex } s
$$

Examples:

(1) $a a b a b$ is Lyndon since $a a b a b<$ Lex $\{a b a b, b a b, a b, b\}$,
(2) $a b a a b$ is not Lyndon, since $a a b<$ Lex $a b a a b$.
(3) $a a b a a b$ is not Lyndon, since $a a b<$ Lex $a a b a a b$.

Definition ([Lyndon 54])

A w is a Lyndon word iff for every proper suffix s of w,

$$
w<\text { Lex } s
$$

Examples:
(1) $a a b a b$ is Lyndon since $a a b a b<$ Lex $\{a b a b, b a b, a b, b\}$,
(2) $a b a a b$ is not Lyndon, since $a a b<$ Lex $a b a a b$.
(3) $a a b a a b$ is not Lyndon, since $a a b<$ Lex $a a b a a b$.

Theorem ([Chen, Fox, Lyndon 58])

Every word has a unique factorization as non-increasing Lyndon words
Example:

$$
\begin{aligned}
& 110110110010011000 \\
= & 1 \cdot 1 \cdot 011 \cdot 011 \cdot 0010011 \cdot 0 \cdot 0 \cdot 0 \\
= & (1)^{2} \cdot(011)^{2} \cdot(0010011)^{1} \cdot(0)^{3} .
\end{aligned}
$$

Combinatorial view of convexity

Theorem ([Brlek, Lachaud, P., Reutenauer 09])
The north-west part of a digital shape is convex iff its Lyndon factorization contains only Christoffel words.

Sketch of the proof :

- Uniqueness of the Lyndon factorization.
- No integer points between a Christoffel word and its convex hull.

110110111010100010010000100010000

$$
\begin{equation*}
=(1)^{2} \cdot 0110111 \cdot(01)^{2} \cdot 001001 \cdot 000010001 . \tag{0}
\end{equation*}
$$

Combinatorial view of convexity

Theorem ([Brlek, Lachaud, P., Reutenauer 09])
The north-west part of a digital shape is convex iff its Lyndon factorization contains only Christoffel words.

Sketch of the proof :

- Uniqueness of the Lyndon factorization.
- No integer points between a Christoffel word and its convex hull.

Duval algorithm

Recursive computation of the First Lyndon Prefix (FLF),

```
W=\longmapsto
```


Duval algorithm

Recursive computation of the First Lyndon Prefix (FLF),
\qquad
(1) Let I_{0} be a Lyndon prefix and k be it's number of repetitions.

Duval algorithm

(1) Let I_{0} be a Lyndon prefix and k be it's number of repetitions.
(2) Identify at the first letter that is not that same than in 10 .

Duval algorithm

If $a>b$ then the Lyndon fact. starts by I_{0}^{k}
(1) Let I_{0} be a Lyndon prefix and k be it's number of repetitions.
(2) Identify at the first letter that is not that same than in 10 .
(3) If its smaller than I_{0} is FLF,

Duval algorithm

Recursive computation of the First Lyndon Prefix (FLF), if $a<b$ then $I_{0}^{k} p b$ is a Lyndon

If $a>b$ then the Lyndon fact. starts by I_{0}^{k}
(1) Let I_{0} be a Lyndon prefix and k be it's number of repetitions.
(2) Identify at the first letter that is not that same than in 10 .
(3) If its smaller than I_{0} is FLF, otherwise, $I_{0}^{k} p b$ is a Lyndon word.

Duval algorithm

Recursive computation of the First Lyndon Prefix (FLF), if $a<b$ then $I_{0}^{k} p b$ is a Lyndon

If $a>b$ then the Lyndon fact. starts by I_{0}^{k}

$$
\frac{0}{I_{0}^{0}} 0
$$

(1) Let I_{0} be a Lyndon prefix and k be it's number of repetitions.
(2) Identify at the first letter that is not that same than in 10 .
(3) If its smaller than I_{0} is FLF, otherwise, $I_{0}^{k} p b$ is a Lyndon word.

Duval algorithm

Recursive computation of the First Lyndon Prefix (FLF), if $a<b$ then $I_{0}^{k} p b$ is a Lyndon

If $a>b$ then the Lyndon fact. starts by I_{0}^{k}

$$
\begin{array}{llllllllllllllllllll}
\downarrow \\
0 \\
\frac{1}{1_{0}} & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0
\end{array} 1
$$

(1) Let I_{0} be a Lyndon prefix and k be it's number of repetitions.
(2) Identify at the first letter that is not that same than in 10 .
(3) If its smaller than I_{0} is FLF, otherwise, $I_{0}^{k} p b$ is a Lyndon word.

Duval algorithm

Recursive computation of the First Lyndon Prefix (FLF), if $a<b$ then $I_{0}^{k} p b$ is a Lyndon

If $a>b$ then the Lyndon fact. starts by I_{0}^{k}

$$
\begin{array}{llllllllllllllllll}
\downarrow & \downarrow \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1
\end{array} 0
$$

(1) Let I_{0} be a Lyndon prefix and k be it's number of repetitions.
(2) Identify at the first letter that is not that same than in 10 .
(3) If its smaller than I_{0} is FLF, otherwise, $I_{0}^{k} p b$ is a Lyndon word.

Duval algorithm

Recursive computation of the First Lyndon Prefix (FLF), if $a<b$ then $I_{0}^{k} p b$ is a Lyndon

If $a>b$ then the Lyndon fact. starts by I_{0}^{k}

(1) Let I_{0} be a Lyndon prefix and k be it's number of repetitions.
(2) Identify at the first letter that is not that same than in 10 .
(3) If its smaller than I_{0} is FLF, otherwise, $I_{0}^{k} p b$ is a Lyndon word.

Duval algorithm

Recursive computation of the First Lyndon Prefix (FLF), if $a<b$ then $I_{0}^{k} p b$ is a Lyndon

If $a>b$ then the Lyndon fact. starts by I_{0}^{k}

$$
\begin{array}{llllllllllllllllll}
& \downarrow \\
0 & 0 & 1 \\
I_{0} & 0 & & & & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0
\end{array} 1001
$$

(1) Let I_{0} be a Lyndon prefix and k be it's number of repetitions.
(2) Identify at the first letter that is not that same than in 10 .
(3) If its smaller than I_{0} is FLF, otherwise, $I_{0}^{k} p b$ is a Lyndon word.

Duval algorithm

Recursive computation of the First Lyndon Prefix (FLF), if $a<b$ then $I_{0}^{k} p b$ is a Lyndon

If $a>b$ then the Lyndon fact. starts by I_{0}^{k}
(1) Let I_{0} be a Lyndon prefix and k be it's number of repetitions.
(2) Identify at the first letter that is not that same than in 10 .
(3) If its smaller than I_{0} is FLF, otherwise, $I_{0}^{k} p b$ is a Lyndon word.

Duval algorithm

Recursive computation of the First Lyndon Prefix (FLF), if $a<b$ then $I_{0}^{k} p b$ is a Lyndon

If $a>b$ then the Lyndon fact. starts by I_{0}^{k}

$$
\begin{array}{lllllllllllllllllll}
\downarrow \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0
\end{array} 0
$$

(1) Let I_{0} be a Lyndon prefix and k be it's number of repetitions.
(2) Identify at the first letter that is not that same than in 10 .
(3) If its smaller than I_{0} is FLF, otherwise, $I_{0}^{k} p b$ is a Lyndon word.

Duval algorithm

Recursive computation of the First Lyndon Prefix (FLF), if $a<b$ then $I_{0}^{k} p b$ is a Lyndon

If $a>b$ then the Lyndon fact. starts by I_{0}^{k}

$$
\begin{array}{llllllllllllllllll}
& \downarrow \\
0 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0
\end{array} 1001
$$

(1) Let I_{0} be a Lyndon prefix and k be it's number of repetitions.
(2) Identify at the first letter that is not that same than in 10 .
(3) If its smaller than I_{0} is FLF, otherwise, $I_{0}^{k} p b$ is a Lyndon word.

Duval algorithm

Recursive computation of the First Lyndon Prefix (FLF), if $a<b$ then $I_{0}^{k} p b$ is a Lyndon

If $a>b$ then the Lyndon fact. starts by I_{0}^{k}

(1) Let I_{0} be a Lyndon prefix and k be it's number of repetitions.
(2) Identify at the first letter that is not that same than in I_{0}.
(3) If its smaller than I_{0} is FLF, otherwise, $I_{0}^{k} p b$ is a Lyndon word.

Duval algorithm

Recursive computation of the First Lyndon Prefix (FLF), if $a<b$ then $I_{0}^{k} p b$ is a Lyndon

If $a>b$ then the Lyndon fact. starts by I_{0}^{k}

\[

\]

(1) Let I_{0} be a Lyndon prefix and k be it's number of repetitions.
(2) Identify at the first letter that is not that same than in 10 .
(3) If its smaller than I_{0} is FLF, otherwise, $I_{0}^{k} p b$ is a Lyndon word.

Duval algorithm

Recursive computation of the First Lyndon Prefix (FLF), if $a<b$ then $I_{0}^{k} p b$ is a Lyndon

If $a>b$ then the Lyndon fact. starts by I_{0}^{k}

(1) Let I_{0} be a Lyndon prefix and k be it's number of repetitions.
(2) Identify at the first letter that is not that same than in 10 .
(3) If its smaller than I_{0} is FLF, otherwise, $I_{0}^{k} p b$ is a Lyndon word.

Duval algorithm

Recursive computation of the First Lyndon Prefix (FLF), if $a<b$ then $I_{0}^{k} p b$ is a Lyndon

If $a>b$ then the Lyndon fact. starts by I_{0}^{k}
(1) Let I_{0} be a Lyndon prefix and k be it's number of repetitions.
(2) Identify at the first letter that is not that same than in 10 .
(3) If its smaller than I_{0} is FLF, otherwise, $I_{0}^{k} p b$ is a Lyndon word.

Duval algorithm

Recursive computation of the First Lyndon Prefix (FLF), if $a<b$ then $I_{0}^{k} p b$ is a Lyndon

If $a>b$ then the Lyndon fact. starts by I_{0}^{k}

(1) Let I_{0} be a Lyndon prefix and k be it's number of repetitions.
(2) Identify at the first letter that is not that same than in 10 .
(3) If its smaller than I_{0} is FLF, otherwise, $I_{0}^{k} p b$ is a Lyndon word.

Duval algorithm

Recursive computation of the First Lyndon Prefix (FLF), if $a<b$ then $I_{0}^{k} p b$ is a Lyndon

If $a>b$ then the Lyndon fact. starts by I_{0}^{k}

$$
I_{0}
$$

(1) Let I_{0} be a Lyndon prefix and k be it's number of repetitions.
(2) Identify at the first letter that is not that same than in 10 .
(3) If its smaller than I_{0} is FLF, otherwise, $I_{0}^{k} p b$ is a Lyndon word.

Duval algorithm

Recursive computation of the First Lyndon Prefix (FLF), if $a<b$ then $I_{0}^{k} p b$ is a Lyndon

If $a>b$ then the Lyndon fact. starts by I_{0}^{k}

$$
\begin{array}{llllllllllllllllll}
0 & \downarrow \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\
\hline
\end{array} I_{0}
$$

(1) Let I_{0} be a Lyndon prefix and k be it's number of repetitions.
(2) Identify at the first letter that is not that same than in 10 .
(3) If its smaller than I_{0} is FLF, otherwise, $I_{0}^{k} p b$ is a Lyndon word.

Duval algorithm

Recursive computation of the First Lyndon Prefix (FLF), if $a<b$ then $I_{0}^{k} p b$ is a Lyndon

If $a>b$ then the Lyndon fact. starts by I_{0}^{k}

$$
\begin{array}{llllllllllllllllll}
0 & \\
0 & 0 & 1 & 0 & 0 & 1 & 1 \\
\hline
\end{array} I_{0}
$$

(1) Let I_{0} be a Lyndon prefix and k be it's number of repetitions.
(2) Identify at the first letter that is not that same than in 10 .
(3) If its smaller than I_{0} is FLF, otherwise, $I_{0}^{k} p b$ is a Lyndon word.

Duval algorithm

Recursive computation of the First Lyndon Prefix (FLF), if $a<b$ then $I_{0}^{k} p b$ is a Lyndon

If $a>b$ then the Lyndon fact. starts by I_{0}^{k}
(1) Let I_{0} be a Lyndon prefix and k be it's number of repetitions.
(2) Identify at the first letter that is not that same than in 10 .
(3) If its smaller than I_{0} is FLF, otherwise, $I_{0}^{k} p b$ is a Lyndon word.

Duval algorithm

Recursive computation of the First Lyndon Prefix (FLF), if $a<b$ then $I_{0}^{k} p b$ is a Lyndon

If $a>b$ then the Lyndon fact. starts by I_{0}^{k}
(1) Let I_{0} be a Lyndon prefix and k be it's number of repetitions.
(2) Identify at the first letter that is not that same than in 10 .
(3) If its smaller than I_{0} is FLF, otherwise, $I_{0}^{k} p b$ is a Lyndon word.

Duval algorithm

Recursive computation of the First Lyndon Prefix (FLF), if $a<b$ then $I_{0}^{k} p b$ is a Lyndon

If $a>b$ then the Lyndon fact. starts by I_{0}^{k}
(1) Let I_{0} be a Lyndon prefix and k be it's number of repetitions.
(2) Identify at the first letter that is not that same than in 10 .
(3) If its smaller than I_{0} is FLF, otherwise, $I_{0}^{k} p b$ is a Lyndon word.

Duval algorithm

Recursive computation of the First Lyndon Prefix (FLF), if $a<b$ then $I_{0}^{k} p b$ is a Lyndon

If $a>b$ then the Lyndon fact. starts by I_{0}^{k}
(1) Let I_{0} be a Lyndon prefix and k be it's number of repetitions.
(2) Identify at the first letter that is not that same than in 10 .
(3) If its smaller than I_{0} is FLF, otherwise, $I_{0}^{k} p b$ is a Lyndon word.

Duval algorithm

Recursive computation of the First Lyndon Prefix (FLF), if $a<b$ then $I_{0}^{k} p b$ is a Lyndon

If $a>b$ then the Lyndon fact. starts by I_{0}^{k}
(1) Let I_{0} be a Lyndon prefix and k be it's number of repetitions.
(2) Identify at the first letter that is not that same than in 10 .
(3) If its smaller than I_{0} is FLF, otherwise, $I_{0}^{k} p b$ is a Lyndon word.

Duval algorithm

Recursive computation of the First Lyndon Prefix (FLF), if $a<b$ then $I_{0}^{k} p b$ is a Lyndon

If $a>b$ then the Lyndon fact. starts by I_{0}^{k}

$$
\left.\begin{array}{lllllllllllllllllll}
0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1, & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0
\end{array}\right)
$$

(1) Let I_{0} be a Lyndon prefix and k be it's number of repetitions.
(2) Identify at the first letter that is not that same than in 10 .
(3) If its smaller than I_{0} is FLF, otherwise, $I_{0}^{k} p b$ is a Lyndon word.

Duval algorithm

Recursive computation of the First Lyndon Prefix (FLF), if $a<b$ then $I_{0}^{k} p b$ is a Lyndon

If $a>b$ then the Lyndon fact. starts by I_{0}^{k}
(1) Let I_{0} be a Lyndon prefix and k be it's number of repetitions.
(2) Identify at the first letter that is not that same than in 10 .
(3) If its smaller than I_{0} is FLF, otherwise, $I_{0}^{k} p b$ is a Lyndon word.

Duval algorithm

Recursive computation of the First Lyndon Prefix (FLF), if $a<b$ then $I_{0}^{k} p b$ is a Lyndon

If $a>b$ then the Lyndon fact. starts by I_{0}^{k}
(1) Let I_{0} be a Lyndon prefix and k be it's number of repetitions.
(2) Identify at the first letter that is not that same than in 10 .
(3) If its smaller than I_{0} is FLF, otherwise, $I_{0}^{k} p b$ is a Lyndon word.

Duval algorithm

Recursive computation of the First Lyndon Prefix (FLF), if $a<b$ then $I_{0}^{k} p b$ is a Lyndon

If $a>b$ then the Lyndon fact. starts by I_{0}^{k}
(1) Let I_{0} be a Lyndon prefix and k be it's number of repetitions.
(2) Identify at the first letter that is not that same than in 10 .
(3) If its smaller than I_{0} is FLF, otherwise, $I_{0}^{k} p b$ is a Lyndon word.

Duval algorithm

Recursive computation of the First Lyndon Prefix (FLF), if $a<b$ then $I_{0}^{k} p b$ is a Lyndon

If $a>b$ then the Lyndon fact. starts by I_{0}^{k}
(1) Let I_{0} be a Lyndon prefix and k be it's number of repetitions.
(2) Identify at the first letter that is not that same than in 10 .
(3) If its smaller than I_{0} is FLF, otherwise, $I_{0}^{k} p b$ is a Lyndon word.

Duval algorithm

Recursive computation of the First Lyndon Prefix (FLF), if $a<b$ then $I_{0}^{k} p b$ is a Lyndon

If $a>b$ then the Lyndon fact. starts by I_{0}^{k}
(1) Let I_{0} be a Lyndon prefix and k be it's number of repetitions.
(2) Identify at the first letter that is not that same than in 10 .
(3) If its smaller than I_{0} is FLF, otherwise, $I_{0}^{k} p b$ is a Lyndon word.

Duval algorithm

Recursive computation of the First Lyndon Prefix (FLF), if $a<b$ then $I_{0}^{k} p b$ is a Lyndon

If $a>b$ then the Lyndon fact. starts by I_{0}^{k}
(1) Let I_{0} be a Lyndon prefix and k be it's number of repetitions.
(2) Identify at the first letter that is not that same than in I_{0}.
(3) If its smaller than I_{0} is FLF, otherwise, $I_{0}^{k} p b$ is a Lyndon word.

Duval algorithm

Recursive computation of the First Lyndon Prefix (FLF), if $a<b$ then $I_{0}^{k} p b$ is a Lyndon

If $a>b$ then the Lyndon fact. starts by I_{0}^{k}

$$
\begin{array}{lllllllllllllllllll}
0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
\hline
\end{array}
$$

(1) Let I_{0} be a Lyndon prefix and k be it's number of repetitions.
(2) Identify at the first letter that is not that same than in 10 .
(3) If its smaller than I_{0} is FLF, otherwise, $I_{0}^{k} p b$ is a Lyndon word.

Duval algorithm

Recursive computation of the First Lyndon Prefix (FLF), if $a<b$ then $I_{0}^{k} p b$ is a Lyndon

If $a>b$ then the Lyndon fact. starts by I_{0}^{k}
(1) Let I_{0} be a Lyndon prefix and k be it's number of repetitions.
(2) Identify at the first letter that is not that same than in 10 .
(3) If its smaller than I_{0} is FLF, otherwise, $I_{0}^{k} p b$ is a Lyndon word.

Duval algorithm

Recursive computation of the First Lyndon Prefix (FLF), if $a<b$ then $I_{0}^{k} p b$ is a Lyndon

If $a>b$ then the Lyndon fact. starts by I_{0}^{k}

$$
\begin{array}{llllllllllllllllllll}
0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0
\end{array} 1
$$

(1) Let I_{0} be a Lyndon prefix and k be it's number of repetitions.
(2) Identify at the first letter that is not that same than in 10 .
(3) If its smaller than I_{0} is FLF, otherwise, $I_{0}^{k} p b$ is a Lyndon word.

Recursive computation of the First Lyndon Prefix (FLF),

$$
\text { if } a<b \text { then } I_{0}^{k} p b \text { is a Lyndon }
$$

If $a>b$ then the Lyndon fact. starts by I_{0}^{k}

$$
\begin{array}{llllllllllllllllllll}
0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0
\end{array} 1
$$

(1) Let I_{0} be a Lyndon prefix and k be it's number of repetitions.
(2) Identify at the first letter that is not that same than in I_{0}.
(3) If its smaller than I_{0} is FLF, otherwise, $I_{0}^{k} p b$ is a Lyndon word. When comparing two different letters, let $I_{0}=(u, v)$:

- if $|p b|=|v|$ then
$a=0$ and $b=1$ and l_{0}^{\prime} is a Christoffel word.
- if $|p b| \neq|v|$ and $a=1$ and $b=0$ then 1_{0} is the first edge of the convex hull.
- if $|p b| \neq|v|$ and $a=0$ and $b=1$ then Shape is not convex.

Part II

Construction guided by Euclid

(5) From Euclid to Christoffel
(6) Alternative construction

Euclid Algorithm

From Euclid

 to Christoffel
Alternative

 constructionStern-Brocot tree

Euclid algorithm

$$
\begin{gathered}
(\underline{7}, 9) \\
\downarrow \\
(7, \underline{2})
\end{gathered}
$$

$(5, \underline{2})$ \downarrow
$(3, \underline{2})$
\downarrow
$(\underline{1}, 2)$ \downarrow
$(1,1)$

Approximation
$(1,1)$
\downarrow
$(1,2)$ \downarrow
$(2,3)$
\downarrow
$(3,4)$ \downarrow
$(4,5)$ \downarrow
$(7,9)$

Matricial view

From Euclid

	Euclid algorithm	Approx.
n	v_{n}	a_{n}
0	$(\underline{7}, 9)$	$(1,1)$
	\downarrow	\downarrow
1	$(7, \underline{2})$	$(1,2)$
	\downarrow	\downarrow
2	$(5, \underline{2})$	$(2,3)$
	\downarrow	\downarrow
3	$(3, \underline{2})$	$(3,4)$
	\downarrow	\downarrow
4	$(\underline{1}, 2)$	$(4,5)$
	\downarrow	\downarrow
5	$(1,1)$	$(7,9)$

Euclid algorithm

Given a vector (x, y), return

- $\left[\begin{array}{rr}1 & 0 \\ -1 & 1\end{array}\right]$ if $x<y$,
- $\left[\begin{array}{rr}1 & -1 \\ 0 & 1\end{array}\right]$ if $x>y$,
- stop if $x=y$.

Given a vector $v \in(\mathbb{N} \backslash\{0\})^{2}$, let :

- $v_{0}=v$,
- For all $n \geq 1:\left\{\begin{array}{l}M_{n}=\operatorname{Euclid}\left(v_{n-1}\right) \\ v_{n}=M_{n} v_{n-1} .\end{array}\right.$

Matricial view

	Euclid algorithm	Approx.
n	v_{n}	a_{n}
0	$(\underline{7}, 9)$	$(1,1)$
	\downarrow	\downarrow
1	$(7, \underline{2})$	$(1,2)$
	\downarrow	\downarrow
2	$(5, \underline{2})$	$(2,3)$
	\downarrow	\downarrow
3	$(3, \underline{2})$	$(3,4)$
	\downarrow	\downarrow
4	$(\underline{1}, 2)$	$(4,5)$
	\downarrow	\downarrow
5	$(1,1)$	$(7,9)$

Euclid algorithm

Given a vector (x, y), return

- $\left[\begin{array}{rr}1 & 0 \\ -1 & 1\end{array}\right]$ if $x<y$,
- $\left[\begin{array}{rr}1 & -1 \\ 0 & 1\end{array}\right]$ if $x>y$,
- stop if $x=y$.

Given a vector $v \in(\mathbb{N} \backslash\{0\})^{2}$, let :

- $v_{0}=v$,
- For all $n \geq 1:\left\{\begin{array}{l}M_{n}=\operatorname{Euclid}\left(v_{n-1}\right) \\ v_{n}=M_{n} v_{n-1} .\end{array}\right.$

Property

- $v_{n}=M_{n} M_{n-1} \cdots M_{1} v$
- $a_{n}=M_{1}^{-1} M_{2}^{-1} \cdots M_{n}^{-1}\binom{1}{1}$

Matricial view

Lemma

Let A, B, C be Christoffel words such that $C=(A, B)$ and $\vec{C}=a_{n}$. Let $\vec{A}=\left(A_{x}, A_{y}\right), \vec{B}=\left(B_{x}, B_{y}\right)$, then:

$$
M_{1}^{\top} M_{2}^{\top} \cdots M_{n}^{\top}=\left[\begin{array}{rr}
A_{x} & -B_{x} \\
-A_{y} & B_{y}
\end{array}\right]
$$

Proof. By recurrence. True for $n=0$, $\mathrm{Id}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$. Suppose true for n,

$$
M_{1}^{\top} \cdots M_{n+1}^{\top}=\left[\begin{array}{rr}
A_{x} & -B_{x} \\
-A_{y} & B_{y}
\end{array}\right]\left[\begin{array}{rr}
1 & -1 \\
0 & 1
\end{array}\right]=\left[\begin{array}{rr}
A_{x} & -A_{x}-B_{x} \\
-A_{y} & A_{y}+B_{y}
\end{array}\right] .
$$

Matricial view

Lemma

Let A, B, C be Christoffel words such that $C=(A, B)$ and $\vec{C}=a_{n}$. Let $\vec{A}=\left(A_{x}, A_{y}\right), \vec{B}=\left(B_{x}, B_{y}\right)$, then:

$$
M_{1}^{\top} M_{2}^{\top} \cdots M_{n}^{\top}=\left[\begin{array}{rr}
A_{x} & -B_{x} \\
-A_{y} & B_{y}
\end{array}\right]
$$

Proof. By recurrence. True for $n=0$, $\mathrm{Id}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$. Suppose true for n,

$$
\begin{gathered}
(A, A B) \quad(A B, B) \\
M_{1}^{\top} \cdots M_{n+1}^{\top}=\left[\begin{array}{rr}
A_{x} & -B_{x} \\
-A_{y} & B_{y}
\end{array}\right]\left[\begin{array}{rr}
1 & -1 \\
0 & 1
\end{array}\right]=\left[\begin{array}{rr}
A_{x} & -A_{x}-B_{x} \\
-A_{y} & A_{y}+B_{y}
\end{array}\right] . \\
M_{1}^{\top} \cdots M_{n}^{\top} e_{1}=\left(A_{x},-A_{y}\right) \\
M_{1}^{\top} \cdots M_{n}^{\top} e_{2}=\left(-B_{x}, B_{y}\right)
\end{gathered}
$$

The Translation-Union Construction

Construction
[Domenjoud, Vuillon 12],
[Berthé, Jamet, Jolivet, P. 2013]
Let $v_{0}=v, B_{0}=\{0\}$ and for all $n \geq 1$ let :
M_{n} : the matrix selected from v_{n-1},

$$
v_{n}=M_{n} v_{n-1}
$$

δ_{n} : the index of the coordinate of v_{n-1} that is subtracted,

$$
\begin{equation*}
T_{n}=M_{1}^{\top} \cdots M_{n}^{\top} e_{\delta_{n}}, \tag{translation}
\end{equation*}
$$

$$
B_{n}=B_{n-1} \cup\left(T_{n}+B_{n-1}\right),
$$

(body)
$H_{n}=\sum_{i \in\{1, \ldots, n\}} T_{i}, \quad$ (highest point)
$L_{n}=H_{n}+\left\{M_{1}^{\top} \cdots M_{n}^{\top} e_{i}\right\}$.

Note that:
$H_{n} \in B_{n}$,
$L_{n} \cap B_{n}=\emptyset$.
$\bullet \in B_{n}, \quad O \in L_{n}$

$$
\begin{aligned}
& v_{0}=(2,3), \\
& a_{0}=(1,1) \\
& H_{0}=(0,0) \\
& L_{0}=\{(1,0),(0,1)\}
\end{aligned}
$$

$$
\begin{aligned}
& v_{1}=(2,1), \delta_{1}=1 \\
& a_{1}=(1,2) \\
& T_{1}=(1,0) \\
& H_{1}=(1,0), \\
& L_{1}=\{(2,0),(0,1)\} .
\end{aligned}
$$

$$
\begin{aligned}
& v_{2}=(1,1), \delta_{2}=2 \\
& a_{2}=(2,3) \\
& T_{2}=(-1,1) \\
& H_{2}=(0,1), \\
& L_{1}=\{(2,-1),(-1,1)\} .
\end{aligned}
$$

The Translation-Union Construction

Property

The points of $B_{n} \cup L_{n}$ for the Christoffel word of vector a_{n}.
Moreover, let $\{x, y\}=L_{n}$ then $\left\langle x, a_{n}\right\rangle=\left\langle y, a_{n}\right\rangle$.

Part III

Generalization to higher dimensions

(7) A general construction

8 The fully subtractive algorithm

3D continued fraction algorithms

Euclid algorithm : given two number subtract the smaller to the larger. $(7,9) \rightarrow(7,2) \rightarrow(5,2) \rightarrow(3,2) \rightarrow(1,2) \rightarrow(1,1) \rightarrow(1,0)$

Euclid algorithm : given two number subtract the smaller to the larger. $(7,9) \rightarrow(7,2) \rightarrow(5,2) \rightarrow(3,2) \rightarrow(1,2) \rightarrow(1,1) \rightarrow(1,0)$

Given three numbers :

- Selmer : subtract the smallest to the largest.

$$
\begin{aligned}
& (3,7,5) \rightarrow(3,4,5) \rightarrow(3,4,2) \rightarrow(3,2,2) \rightarrow(1,2,2) \rightarrow(1,2,0) \rightarrow \\
& (1,1,0) \rightarrow(1,0,0)
\end{aligned}
$$

- Brun : subtract the second largest to the largest. $(3,7,5) \rightarrow(3,2,5) \rightarrow(3,2,2) \rightarrow(1,2,2) \rightarrow(1,2,0) \rightarrow(1,1,0) \rightarrow(1,0,0)$.
- Fully subtractive : subtract the smallest to the two others.

$$
(3,7,5) \rightarrow(3,4,2) \rightarrow(1,2,2) \rightarrow(1,1,1) \rightarrow(1,0,0)
$$

- Poincaré : subtract the smallest to the mid and the mid to the largest.

$$
(3,7,5) \rightarrow(3,2,2) \rightarrow(1,2,0) \rightarrow(1,1,0) \rightarrow(1,0,0)
$$

- Arnoux-Rauzy : subtract the sum of the two smallest to the largest (not always possible).
$(3,7,5) \rightarrow$ impossible.

The Translation-Union Construction

Construction

Let $v_{0}=v, B_{0}=\{0\}$ and for all $n \geq 1$ let :
M_{n} : the matrix selected from v_{n-1},
$v_{n}=M_{n} v_{n-1}$
δ_{n} : the index of the coordinate of v_{n-1} that is subtracted,

$$
\begin{equation*}
T_{n}=M_{1}^{\top} \cdots M_{n}^{\top} e_{\delta_{n}}, \tag{body}
\end{equation*}
$$

(translation)
$B_{n}=B_{n-1} \cup\left(T_{n}+B_{n-1}\right)$,
$H_{n}=\sum_{i \in\{1, \ldots, n\}} T_{i}, \quad$ (highest point)
$L_{n}=H_{n}+\left\{M_{1}^{\top} \cdots M_{n}^{\top} e_{i}\right\}$.

The Translation-Union Construction

Construction

Let $v_{0}=v, B_{0}=\{0\}$ and for all $n \geq 1$ let :
M_{n} : the matrix selected from v_{n-1},
$v_{n}=M_{n} v_{n-1}$
δ_{n} : the index of the coordinate of v_{n-1} that is subtracted,
$T_{n}=M_{1}^{\top} \cdots M_{n}^{\top} e_{\delta_{n}}$,
(translation)
$B_{n}=B_{n-1} \cup\left(T_{n}+B_{n-1}\right)$,
$H_{n}=\sum_{i \in\{1, \ldots, n\}} T_{i}, \quad$ (highest point)
$L_{n}=H_{n}+\left\{M_{1}^{\top} \cdots M_{n}^{\top} e_{i}\right\}$.

Property
If the action of M_{n} is to subtract a coordinate to at least one other coordinate while keeping it positive, then $B_{n} \in \mathcal{P}(v, 0)$.

Proof: $\left\langle T_{n}, v\right\rangle=\left\langle M_{1}^{\top} \ldots M_{n}^{\top} e_{\delta_{n}}, v\right\rangle=$ $\left\langle e_{\delta_{n}}, M_{n} \cdots M_{1} v\right\rangle=\left\langle e_{\delta_{n}}, v_{n}\right\rangle$ is equal to the value of the coordinate that is subtracted.

Let $x \in B_{n}$, then $x=\sum_{i \in I} T_{i}$ for some $I \subset\{1, \cdots, n\}$ and

$$
0 \leq\langle x, v\rangle<\|v\|_{1}
$$

Construction using fully Subtractive

Subtract the smallest coordinate to the two others.
The matrices are :

$$
\left[\begin{array}{rrr}
1 & 0 & 0 \\
-1 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right],\left[\begin{array}{rrr}
1 & -1 & 0 \\
0 & 1 & 0 \\
0 & -1 & 1
\end{array}\right],\left[\begin{array}{rrr}
1 & 0 & -1 \\
0 & 1 & -1 \\
0 & 0 & 1
\end{array}\right]
$$

Construction using fully Subtractive

Subtract the smallest coordinate to the two others.
The matrices are :

$$
\left[\begin{array}{rrr}
1 & 0 & 0 \\
-1 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right],\left[\begin{array}{rrr}
1 & -1 & 0 \\
0 & 1 & 0 \\
0 & -1 & 1
\end{array}\right],\left[\begin{array}{rrr}
1 & 0 & -1 \\
0 & 1 & -1 \\
0 & 0 & 1
\end{array}\right]
$$

Definition

Let \mathcal{K} be the set of vectors v such $\mathbf{F S}^{N}(v)=(1,1,1)$ for some $N \geq 1$.

- $\mathcal{K} \ni(1,2,2) \xrightarrow{\mathrm{FS}}(1,1,1)$
- $\mathcal{K} \nexists(2,2,5) \xrightarrow{\text { FS }}(0,2,3)$

Tree structure

Theorem ([Domenjoud, Vuillon 12])
When using the fully subtractive algorithm, the graph of B_{n} is a tree.

Recursive construction with Fully Subtractive

	Approx.	Fully subtractive algorithm	
		$(1,1,1)$	$(\underline{2}, 8,11)$

Recursive construction with Fully Subtractive

Property
Using Fully Subtractive on $v \in \mathcal{K}$, let N be such that $v_{N}=(1,1,1)$ and so $a_{N}=v$:
(1) $B_{N} \cup L_{N}$ is connected.
(2) B_{N} has exactly one point at each height from 0 to $\left\lfloor\frac{\|v\|_{1}}{2}\right\rfloor-1$

3 All points of L_{N} have height $\left\lfloor\frac{\|v\|_{1}}{2}\right\rfloor$

Recursive construction with Fully Subtractive

Property

Using Fully Subtractive on $v \in \mathcal{K}$, let N be such that $v_{N}=(1,1,1)$ and so $a_{N}=v$:
(1) $B_{N} \cup L_{N}$ is connected.
(2) B_{N} has exactly one point at each height from 0 to $\left\lfloor\frac{\|v\|_{1}}{2}\right\rfloor-1$

3 All points of L_{N} have height $\left\lfloor\frac{\|v\|_{1}}{2}\right\rfloor$

1. B_{n} is a tree.

Recursive construction with Fully Subtractive

Property

Using Fully Subtractive on $v \in \mathcal{K}$, let N be such that $v_{N}=(1,1,1)$ and so $a_{N}=v$:
(1) $B_{N} \cup L_{N}$ is connected.
(2) B_{N} has exactly one point at each height from 0 to $\left\lfloor\frac{\|v\|_{1}}{2}\right\rfloor-1$

3 All points of L_{N} have height $\left\lfloor\frac{\|v\|_{1}}{2}\right\rfloor$

1. B_{n} is a tree.
2. $v=v_{0} \xrightarrow{\mathbf{F S}} v_{1} \xrightarrow{\text { FS }} \cdots \xrightarrow{\mathrm{FS}} v_{N}=(1,1,1)$

The heigth of each T_{i} is equal to the coordinate that has been subtracted to the two other coordinates.

$$
\left\|v_{n}\right\|_{1}=\left\|v_{n-1}\right\|_{1}-2\left\langle T_{n}, v\right\rangle
$$

Recursive construction with Fully Subtractive

Property

Using Fully Subtractive on $v \in \mathcal{K}$, let N be such that $v_{N}=(1,1,1)$ and so $a_{N}=v$:
(1) $B_{N} \cup L_{N}$ is connected.
(2) B_{N} has exactly one point at each height from 0 to $\left\lfloor\frac{\|v\|_{1}}{2}\right\rfloor-1$

3 All points of L_{N} have height $\left\lfloor\frac{\|v\|_{1}}{2}\right\rfloor$

1. B_{n} is a tree.
2. $v=v_{0} \xrightarrow{\mathbf{F S}} v_{1} \xrightarrow{\text { FS }} \cdots \xrightarrow{\text { FS }} v_{N}=(1,1,1)$

The heigth of each T_{i} is equal to the coordinate that has been subtracted to the two other coordinates.

$$
\left\|v_{n}\right\|_{1}=\left\|v_{n-1}\right\|_{1}-2\left\langle T_{n}, v\right\rangle
$$

3. $L_{n}=H_{n}+\left\{M_{1}^{T} \cdots M_{n}^{T} e_{i}\right\}$ and

$$
\left\langle M_{1}^{T} \cdots M_{N}^{T} e_{i}, v\right\rangle=\left\langle e_{i}, M_{N} \cdots M_{1} v\right\rangle=\left\langle e_{i}, v_{N}\right\rangle=\left\langle e_{i},(1,1,1)\right\rangle=1
$$

From pattern to digital plane

$$
\operatorname{kev}=(6,8,11),\left\lfloor\frac{\|v\|_{1}}{2}\right\rfloor=12
$$

The fully subtractive algorithm

From pattern to digital plane

$$
\operatorname{kev}=(6,8,11),\left\lfloor\frac{\|v\|_{1}}{2}\right\rfloor=12
$$

From pattern to digital plane

$$
\operatorname{kev}=(6,8,11),\left\lfloor\frac{\|v\|_{1}}{2}\right\rfloor=12
$$

The fully subtractive algorithm

The set \mathcal{K}

 subtractive algorithm$$
v \xrightarrow{\mathrm{FS}} \cdots \xrightarrow{\mathrm{FS}}(1,1,1)
$$

$(0,0,1)$

Vectors not in \mathcal{K}

Let $v \in(\mathbb{N} \backslash\{0\})^{3}$ such that $v \notin \mathcal{K}$, then either :
(1) $\mathbf{F S}^{n}(v)=(g, g, g)$ with $g \geq 2$.
(2) $\mathbf{F S}^{n}(v)=(a, a, b)$ with $a<b$ so that $\mathbf{F S}((a, a, b))=(0, a, b-a)$.
(3) $\mathbf{F S}^{n}(v)=(a, b, c)$ with $a+b \leq c$.

Vectors not in \mathcal{K}

Let $v \in(\mathbb{N} \backslash\{0\})^{3}$ such that $v \notin \mathcal{K}$, then either :
(1) $\mathbf{F S}^{n}(v)=(g, g, g)$ with $g \geq 2$.
(2) $\mathbf{F S}^{n}(v)=(a, a, b)$ with $a<b$ so that $\operatorname{FS}((a, a, b))=(0, a, b-a)$.
(3) $\mathbf{F S}^{n}(v)=(a, b, c)$ with $a+b \leq c$.

Solution:
(1) Then $g=\operatorname{gcd}(v)$, use $v / g \in \mathcal{K}$.

Vectors not in \mathcal{K}

Let $v \in(\mathbb{N} \backslash\{0\})^{3}$ such that $v \notin \mathcal{K}$, then either :
(1) $\mathbf{F S}^{n}(v)=(g, g, g)$ with $g \geq 2$.
(2) $\mathbf{F S}^{n}(v)=(a, a, b)$ with $a<b$ so that $\operatorname{FS}((a, a, b))=(0, a, b-a)$.
(3) $\mathbf{F S}^{n}(v)=(a, b, c)$ with $a+b \leq c$.

Solution:
(1) Then $g=\operatorname{gcd}(v)$, use $v / g \in \mathcal{K}$.
(2) Do not use FS...
(3) Do not use FS.

Vectors not in \mathcal{K}

Let $v \in(\mathbb{N} \backslash\{0\})^{3}$ such that $v \notin \mathcal{K}$, then either :
(1) $\mathbf{F S}^{n}(v)=(g, g, g)$ with $g \geq 2$.
(2) $\mathbf{F S}^{n}(v)=(a, a, b)$ with $a<b$ so that $\operatorname{FS}((a, a, b))=(0, a, b-a)$.
(3) $\mathbf{F S}^{n}(v)=(a, b, c)$ with $a+b \leq c$.

Solution:
(1) Then $g=\operatorname{gcd}(v)$, use $v / g \in \mathcal{K}$.
(2) Do not use FS...
(3) Do not use FS...

Vectors not in \mathcal{K}

Idea: Use hybrid algorithm, suppose $a \leq b \leq c$,

$$
(a, b, c)=\left\{\begin{array}{l}
\operatorname{FS}((a, b, c)) \text { if } a \neq b \text { and } a+b \leq c \\
\operatorname{Brun}((a, b, c)) \text { otherwise }
\end{array}\right.
$$

Brun: subtract the second biggest coordinate to the biggest one.

$$
\begin{equation*}
\xrightarrow{\mathrm{FS}}(9,6,2) \tag{9,15,11}
\end{equation*}
$$

$\xrightarrow{\text { Brun }}(3,3,2)$
$\xrightarrow{\text { Brun }}(3,6,2)$

$$
\xrightarrow{\mathrm{FS}}(1,1,2)
$$

Property ([Lafrenière, Jamet, P.)]
Using the hybrid FS+Brun algorithm, for all vector $v \in(\mathbb{N} \backslash\{0\})^{3}$
(1) $\exists N$ such that $v_{N}=(1,1,1)$ (or gcd...).
(2) Vectors of L_{n} have same height, (providing period vectors).
(3) $B_{n} \cup L_{n}$ is connected but in general not a tree.
(4) $\left\lfloor\frac{\|v\|_{1}}{2}\right\rfloor-1 \leq\left\langle H_{N}\right\rangle<\|v\|_{1}$.
(5) There is a least one point at each height from 0 to $\left\langle H_{N}\right\rangle$ but in general no unicity.

$$
\xrightarrow{\text { Brun }}(1,1,1)
$$

Conclusion

Good:

- Generalization of Christoffel words to higher dimensions.
- Construction is recursive and based on continued fraction algorithms.
- Construction of the periodic pattern of the digital plane for \mathcal{K}.

Problems: Open questions:

- Provide a gcd algorithm that builds minimal patterns for \mathcal{K}^{C}.
- Give a geometrical interpretation of the patterns produced by the hybrid algorihtm.
- Control the anisotropy of the patterns (avoid stretched forms in favor of potato-likeness).
- Apply recursive structure to image analysis algorithms.

Merci

