Recursive structure of digital planes, a combinatorial approach based on continued fractions

Xavier Provençal Laboratoire de Mathématiques Université Savoie Mont-Blanc

FS

UNIVERSITÉ SAVOIE MONT BLANC

Journées Informatique et Géométrie 2015 8 octobre 2015, Paris

Outline

1 Recursive Structure of Digital line

2 Construction guided by Euclid

3 Generalization to higher dimensions

Periodic structure

Christoffel words

Digital convexity test

1 Definition

2 Periodic structure

3 Christoffel words

4 Digital convexity test

Part I

Recursive Structure of Digital line

Periodic structure

Christoffel words

Digital convexity test

Definition ([Reveillès 91])

The digital hyperplane $\mathcal{P}(v, \mu)$ with normal vector $v \in \mathbb{Z}^d$, shift $\mu \in \mathbb{R}$ is the subset of \mathbb{Z}^d defined by:

$$\mathcal{P}(\mathbf{v},\mu) = \left\{ x \in \mathbb{Z}^d \mid \mu \leq \langle x, \mathbf{v} \rangle < \mu + \|\mathbf{v}\|_1
ight\}$$

Periodic structure

Christoffel words

Digital convexity test

Definition ([Reveillès 91])

The digital hyperplane $\mathcal{P}(v, \mu)$ with normal vector $v \in \mathbb{Z}^d$, shift $\mu \in \mathbb{R}$ is the subset of \mathbb{Z}^d defined by:

$$\mathcal{P}(\boldsymbol{v}, \mu) = \left\{ \boldsymbol{x} \in \mathbb{Z}^d \mid \mu \leq \langle \boldsymbol{x}, \boldsymbol{v} \rangle < \mu + \|\boldsymbol{v}\|_1 \right\}$$

A digital line can be coded on two letters.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Definition

Periodic structure

Christoffel words

- v = (-3, 1),
- $\mathcal{P}(v,0) = \{x \in \mathbb{Z}^2 \mid 0 \le \langle x,v \rangle < 4\}.$

Definition

Periodic structure

Christoffel words

Digital convexity test

- v = (-3, 1),
- $\mathcal{P}(\mathbf{v},\mathbf{0}) = \{x \in \mathbb{Z}^2 \mid \mathbf{0} \le \langle x, \mathbf{v} \rangle < 4\}.$

• $\langle x, v \rangle = \langle y, v \rangle \implies y - x$ is a period vector.

• A point of each height from 0 to $||v||_1 - 1$ appear in a period.

メロト メロト メヨト メヨト

Definition

Periodic structure

Christoffel words

< □ ▶ < ⊡ ▶ < Ξ ▶ < Ξ ▶ < Ξ ▶ < Ξ ▶ < Ξ
 < 35

 $v = (1, 2, 3), \quad \mathcal{P}(v, 0) = \{x \in \mathbb{Z}^3 \mid 0 \le \langle x, v \rangle < 6\}$

Definition

Periodic structure

Christoffel words

▲口 ▶ ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

 $v = (1, 2, 3), \quad \mathcal{P}(v, 0) = \{x \in \mathbb{Z}^3 \mid 0 \le \langle x, v \rangle < 6\}$

Definition

Periodic structure

Christoffel words

▲口 ▶ ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

 $v = (1, 2, 3), \quad \mathcal{P}(v, 0) = \{x \in \mathbb{Z}^3 \mid 0 \le \langle x, v \rangle < 6\}$

Definition

Periodic structure

Christoffel words

< □ ▶ < ⊡ ▶ < Ξ ▶ < Ξ ▶ < Ξ ▶ < Ξ ▶ < Ξ
 < 35

 $v = (1, 2, 3), \quad \mathcal{P}(v, 0) = \{x \in \mathbb{Z}^3 \mid 0 \le \langle x, v \rangle < 6\}$

- $\langle x, v \rangle = \langle y, v \rangle \implies y x$ is a period vector.
- A point of each height from 0 to $||v||_1 1$ appear in a period.

Definition

Periodic structure

Christoffel words

< □ ▶ < 圕 ▶ < 壹 ▶ < 壹 ▶ < 壹 ▶ 7/35

Definition

Periodic structure

Christoffel words

Digital convexity test

Definition ([Christoffel 1875])

A **Christoffel word** codes digital path right below a segments between two consecutive integer points

< □ ▶ < 圕 ▶ < 壹 ▶ < 壹 ▶ < 壹 ▶ 7/35

Definition

Periodic structure

Christoffel words

Digital convexity test

Definition ([Christoffel 1875])

A **Christoffel word** codes digital path right below a segments between two consecutive integer points

< □ ▶ < 圕 ▶ < 壹 ▶ < 壹 ▶ < 壹 ▶ 7/35

Definition

Periodic structure

Christoffel words

Digital convexity test

Definition ([Christoffel 1875])

A **Christoffel word** codes digital path right below a segments between two consecutive integer points

Periodic structure

Christoffel words

Digital convexity test

Definition ([Christoffel 1875])

A **Christoffel word** codes digital path right below a segments between two consecutive integer points

w = 00100100101 is the Christoffel word of slope 4/7.

Periodic structure

Christoffel words

Digital convexity test

Definition ([Christoffel 1875])

A **Christoffel word** codes digital path right below a segments between two consecutive integer points

 $w = 001 \cdot 00100101$ is the Christoffel word of slope 4/7.

Theorem ([Borel, Laubie 93])

Any Christoffel word, other than 0 and 1, can be written in a unique way as a product of two Christoffel words.

This is called the standard factorization, noted w = (u, v).

Christoffel Tree

If (u, v) is a standard factorization, then (u, uv) and (uv, v) are standard factorizations of Christoffel words.

Definition

Periodic structure

Christoffel words

Digital convexity test

<ロト</th>
 日本
 日本

Christoffel Tree

Christoffel words

If (u, v) is a standard factorization, then (u, uv) and (uv, v) are standard factorizations of Christoffel words. The **Christoffel Tree** is the tree obtained, starting from (0, 1), using the rule : (u, v)(u, uv)(uv, v)

Christoffel Tree

D. 1. 11.

structure

Christoffel words

Stern-Brocot Tree

Stern-Brocot tree.

Every irreducible fraction appears exactly once in the Stern-Brocot tree.

Christoffel tree

words

Christoffel

<ロト < 回 ト < 三 ト < 三 ト 三 · ???

Stern-Brocot Tree

Stern-Brocot tree.

(0, 1)(0, 01) (01, 1) $\frac{2}{3}$ (0,001) (01, 011) (001, 01)(011, 1) $\frac{3}{2}$ 35 $\frac{4}{3}$ $\frac{5}{2}$ 25 $\frac{3}{4}$ $)(\cdots)(\cdots)(\cdots)(\cdots)(\cdots)(\cdots)(\cdots)(\cdots)(\cdots)$ 53

Every irreducible fraction appears exactly once in the Stern-Brocot tree.

Christoffel tree

words

Christoffel

Stern-Brocot Tree

Christoffel words

Every irreducible fraction appears exactly once in the Stern-Brocot tree.

Christoffel tree

(日) æ

Digital convexity

Definition

Periodic structure

Christoffel words

Digital convexity test

Definition

A digital set $D \subset Z^d$ is digitally convex if

• $\operatorname{Dig}(\operatorname{Conv}(D)) = D.$

Definitions and characterizations :

- [Minsky and Papert 1969]
- [Sklansky 1970]
- [Kim, Rosenfeld 1981]
- [Hübler, Klette, Voss 1981]

- - [Chassery 1983]
 - ...
 - [Brlek, Lachaud, P., Reutenauer 2009]

<ロト < 回 > < 回 > < 回 > < 回 > < 三 > 三 三

70735

<ロト<日、<日、<日、<日、<日、<日、<日、<日、<日、<日、<日、<日、<11/35

Definition

Periodic structure

Christoffel words

Digital convexity test

Corollary

A Christoffel word that admits w = (u, v) as a proper prefix, has a prefix of the form : $w^k v = (w, w^{k-1}v)$.

◆□▶ ◆舂▶ ◆恵▶ ◆恵▶ → 恵

71935

Definition

Periodic structure

Christoffel words

Digital convexity test

Corollary

A Christoffel word that admits w = (u, v) as a proper prefix, has a prefix of the form : $w^k v = (w, w^{k-1}v)$.

W]
u	V	

◆□▶ ◆舂▶ ◆恵▶ ◆恵▶ → 恵

71935

Definition

Periodic structure

Christoffel words

Digital convexity test

Corollary

A Christoffel word that admits w = (u, v) as a proper prefix, has a prefix of the form : $w^k v = (w, w^{k-1}v)$.

Periodic structure

Christoffel words

Digital convexity test

Corollary

A Christoffel word that admits w = (u, v) as a proper prefix, has a prefix of the form : $w^k v = (w, w^{k-1}v)$.

Periodic structure

Christoffel words

Digital convexity test

Corollary

A Christoffel word that admits w = (u, v) as a proper prefix, has a prefix of the form : $w^k v = (w, w^{k-1}v)$.

Periodic structure

Christoffel words

Digital convexity test

Corollary

A Christoffel word that admits w = (u, v) as a proper prefix, has a prefix of the form : $w^k v = (w, w^{k-1}v)$.

Identifying the longest prefix that is a Christoffel word :

Corollary Let word w = (u, v) and v = p1, then p0 is a prefix of w.

< □ ▶ < ⊡ ▶ < Ξ ▶ < Ξ ▶ < Ξ ▶ < Ξ ▶ < Ξ ▶ < Ξ ↓
 12/35

Definition

Periodic structure

Christoffel words

Digital convexity test

Property

< □ ▶ < ⊡ ▶ < Ξ ▶ < Ξ ▶ < Ξ ▶ < Ξ ▶ < Ξ ▶ < Ξ ↓
 12/35

Definition

Periodic structure

Christoffel words

Digital convexity test

Property

Periodic structure

Christoffel words

Digital convexity test

Property

Periodic structure

Christoffel words

Digital convexity test

Property

Lyndon words

<ロ > < 団 > < 臣 > < 臣 > < 臣 > 臣 33/35

Periodic structure

Christoffel words

Digital convexity test Definition ([Lyndon 54])

A w is a Lyndon word iff for every proper suffix s of w,

 $w <_{\text{Lex}} s$

Examples :

- **1** aabab is Lyndon since $aabab <_{Lex} \{abab, bab, ab, b\}$,
- **2** abaab is not Lyndon, since $aab <_{Lex} abaab$.
- **3** aabaab is not Lyndon, since $aab <_{Lex} aabaab$.

Lyndon words

< □ ▶ < ⊡ ▶ < Ξ ▶ < Ξ ▶ < Ξ ▶ < Ξ ▶ < Ξ ▶ < Ξ > 35
 35

Periodic structure

Christoffel words

Digital convexity test Definition ([Lyndon 54])

A w is a Lyndon word iff for every proper suffix s of w,

 $w <_{\text{Lex}} s$

Examples :

- **1** aabab is Lyndon since aabab <_{Lex} {abab, bab, ab, b},
- **2** abaab is not Lyndon, since $aab <_{Lex} abaab$.
- **3** aabaab is not Lyndon, since $aab <_{Lex} aabaab$.

Theorem ([Chen, Fox, Lyndon 58])

Every word has a unique factorization as non-increasing Lyndon words

Example :

 $\begin{array}{rcl} & 110110110010011000\\ = & 1\cdot 1\cdot 011\cdot 011\cdot 0010011\cdot 0\cdot 0\cdot 0\\ = & (1)^2\cdot (011)^2\cdot (0010011)^1\cdot (0)^3. \end{array}$

Combinatorial view of convexity

Theorem ([Brlek, Lachaud, P., Reutenauer 09])

The north-west part of a digital shape is convex iff its Lyndon factorization contains only Christoffel words.

Sketch of the proof :

- Uniqueness of the Lyndon factorization.
- No integer points between a Christoffel word and its convex hull.

Periodic structure

Christoffel words

Combinatorial view of convexity

Theorem ([Brlek, Lachaud, P., Reutenauer 09])

The north-west part of a digital shape is convex iff its Lyndon factorization contains only Christoffel words.

Sketch of the proof :

- Uniqueness of the Lyndon factorization.
- No integer points between a Christoffel word and its convex hull.

Periodic

Christoffel words

Recursive computation of the First Lyndon Prefix (FLF),

w =

Digital convexity

test

Recursive computation of the First Lyndon Prefix (FLF),

1 Let l_0 be a Lyndon prefix and k be it's number of repetitions.

Definition

Periodic structure

Christoffel words

□ ▶ < ⓓ ▶ < ≧ ▶ < ≧ ▶ < ≧ ▶
 15/35

Recursive computation of the First Lyndon Prefix (FLF),

1 Let I_0 be a Lyndon prefix and k be it's number of repetitions.

2 Identify at the first letter that is not that same than in I_0 .

Definition

Periodic structure

Christoffel words

Recursive computation of the First Lyndon Prefix (FLF),

Periodic structure

Christoffel words

Digital convexity test

If a > b then the Lyndon fact. starts by l_0^k

1 Let l_0 be a Lyndon prefix and k be it's number of repetitions.

2 Identify at the first letter that is not that same than in I_0 .

3 If its smaller than I₀ is FLF,

Recursive computation of the First Lyndon Prefix (FLF),

If a > b then the Lyndon fact. starts by l_0^k

1 Let l_0 be a Lyndon prefix and k be it's number of repetitions.

2 Identify at the first letter that is not that same than in I_0 .

3 If its smaller than l_0 is FLF, otherwise, $l_0^k pb$ is a Lyndon word.

Definition

Periodic structure

Christoffel words

Recursive computation of the First Lyndon Prefix (FLF),

If a > b then the Lyndon fact. starts by l_0^k

1 Let l_0 be a Lyndon prefix and k be it's number of repetitions.

2 Identify at the first letter that is not that same than in I_0 .

3 If its smaller than l_0 is FLF, otherwise, $l_0^k pb$ is a Lyndon word.

Definition

Periodic structure

Christoffel words

Recursive computation of the First Lyndon Prefix (FLF),

If a > b then the Lyndon fact. starts by I_0^k

$$\begin{smallmatrix} \downarrow \\ 0 \\ I_0 \end{smallmatrix} (\begin{smallmatrix} 1 \\ 0 \end{smallmatrix} (I \end{smallmatrix} (I))))))))))))))$$

1 Let l_0 be a Lyndon prefix and k be it's number of repetitions.

2 Identify at the first letter that is not that same than in I_0 .

3 If its smaller than l_0 is FLF, otherwise, $l_0^k pb$ is a Lyndon word.

Definition

Periodic structure

Christoffel words

Recursive computation of the First Lyndon Prefix (FLF),

If a > b then the Lyndon fact. starts by l_0^k

1 Let l_0 be a Lyndon prefix and k be it's number of repetitions.

2 Identify at the first letter that is not that same than in I_0 .

3 If its smaller than l_0 is FLF, otherwise, $l_0^k pb$ is a Lyndon word.

Definition

Periodic structure

Christoffel words

Recursive computation of the First Lyndon Prefix (FLF),

If a > b then the Lyndon fact. starts by l_0^k

1 Let l_0 be a Lyndon prefix and k be it's number of repetitions.

2 Identify at the first letter that is not that same than in I_0 .

3 If its smaller than l_0 is FLF, otherwise, $l_0^k pb$ is a Lyndon word.

Definition

Periodic structure

Christoffel words

Recursive computation of the First Lyndon Prefix (FLF),

If a > b then the Lyndon fact. starts by I_0^k

1 Let l_0 be a Lyndon prefix and k be it's number of repetitions.

2 Identify at the first letter that is not that same than in I_0 .

3 If its smaller than l_0 is FLF, otherwise, $l_0^k pb$ is a Lyndon word.

Definition

Periodic structure

Christoffel words

Recursive computation of the First Lyndon Prefix (FLF),

If a > b then the Lyndon fact. starts by I_0^k

1 Let l_0 be a Lyndon prefix and k be it's number of repetitions.

2 Identify at the first letter that is not that same than in I_0 .

3 If its smaller than l_0 is FLF, otherwise, $l_0^k pb$ is a Lyndon word.

Definition

Periodic structure

Christoffel words

Recursive computation of the First Lyndon Prefix (FLF),

If a > b then the Lyndon fact. starts by I_0^k

1 Let l_0 be a Lyndon prefix and k be it's number of repetitions.

2 Identify at the first letter that is not that same than in I_0 .

3 If its smaller than l_0 is FLF, otherwise, $l_0^k pb$ is a Lyndon word.

Definition

Periodic structure

Christoffel words

Recursive computation of the First Lyndon Prefix (FLF),

If a > b then the Lyndon fact. starts by I_0^k

1 Let l_0 be a Lyndon prefix and k be it's number of repetitions.

2 Identify at the first letter that is not that same than in I_0 .

3 If its smaller than l_0 is FLF, otherwise, $l_0^k pb$ is a Lyndon word.

Definition

Periodic structure

Christoffel words

Recursive computation of the First Lyndon Prefix (FLF),

If a > b then the Lyndon fact. starts by I_0^k

$$\underbrace{\begin{smallmatrix} \downarrow \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ \hline I_0 & & & \\ I_0 & & & \\ \hline I_0 & & & \\ I_0 & & \\ I_$$

1 Let l_0 be a Lyndon prefix and k be it's number of repetitions.

2 Identify at the first letter that is not that same than in I_0 .

3 If its smaller than l_0 is FLF, otherwise, $l_0^k pb$ is a Lyndon word.

Definition

Periodic structure

Christoffel words

Recursive computation of the First Lyndon Prefix (FLF),

If a > b then the Lyndon fact. starts by I_0^k

1 Let l_0 be a Lyndon prefix and k be it's number of repetitions.

2 Identify at the first letter that is not that same than in I_0 .

3 If its smaller than l_0 is FLF, otherwise, $l_0^k pb$ is a Lyndon word.

Definition

Periodic structure

Christoffel words

Recursive computation of the First Lyndon Prefix (FLF),

If a > b then the Lyndon fact. starts by I_0^k

1 Let l_0 be a Lyndon prefix and k be it's number of repetitions.

2 Identify at the first letter that is not that same than in I_0 .

3 If its smaller than l_0 is FLF, otherwise, $l_0^k pb$ is a Lyndon word.

Definition

Periodic structure

Christoffel words

Recursive computation of the First Lyndon Prefix (FLF),

If a > b then the Lyndon fact. starts by I_0^k

1 Let l_0 be a Lyndon prefix and k be it's number of repetitions.

2 Identify at the first letter that is not that same than in I_0 .

3 If its smaller than l_0 is FLF, otherwise, $l_0^k pb$ is a Lyndon word.

Definition

Periodic structure

Christoffel words

Recursive computation of the First Lyndon Prefix (FLF),

If a > b then the Lyndon fact. starts by I_0^k

1 Let l_0 be a Lyndon prefix and k be it's number of repetitions.

2 Identify at the first letter that is not that same than in I_0 .

3 If its smaller than l_0 is FLF, otherwise, $l_0^k pb$ is a Lyndon word.

Definition

Periodic structure

Christoffel words

Recursive computation of the First Lyndon Prefix (FLF),

If a > b then the Lyndon fact. starts by I_0^k

1 Let l_0 be a Lyndon prefix and k be it's number of repetitions.

2 Identify at the first letter that is not that same than in I_0 .

3 If its smaller than l_0 is FLF, otherwise, $l_0^k pb$ is a Lyndon word.

Definition

Periodic structure

Christoffel words

Recursive computation of the First Lyndon Prefix (FLF),

If a > b then the Lyndon fact. starts by I_0^k

1 Let l_0 be a Lyndon prefix and k be it's number of repetitions.

2 Identify at the first letter that is not that same than in I_0 .

3 If its smaller than l_0 is FLF, otherwise, $l_0^k pb$ is a Lyndon word.

Definition

Periodic structure

Christoffel words

Recursive computation of the First Lyndon Prefix (FLF),

If a > b then the Lyndon fact. starts by I_0^k

$$\underbrace{\begin{smallmatrix} 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ \hline I_0 & I_$$

1 Let l_0 be a Lyndon prefix and k be it's number of repetitions.

2 Identify at the first letter that is not that same than in I_0 .

3 If its smaller than l_0 is FLF, otherwise, $l_0^k pb$ is a Lyndon word.

Definition

Periodic structure

Christoffel words

Recursive computation of the First Lyndon Prefix (FLF),

If a > b then the Lyndon fact. starts by I_0^k

$$\underbrace{\begin{smallmatrix} 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ \hline I_0 & I_1 & I_1 \\ \hline I_0 & I_1 \\ \hline I_1 & I_1 \\ \hline I_1 & I_2 \\ \hline I_1 & I_2 \\ \hline I_1 & I_2 \\ \hline I_2 & I_2 \\ \hline I_1 & I_2 \\ \hline I_2 & I_2 \\ \hline I_1 & I_2 \\ \hline I_2 & I_2 \\ \hline I_1 & I_2 \\ \hline I_2 & I_2 \\$$

1 Let l_0 be a Lyndon prefix and k be it's number of repetitions.

2 Identify at the first letter that is not that same than in I_0 .

3 If its smaller than l_0 is FLF, otherwise, $l_0^k pb$ is a Lyndon word.

Definition

Periodic structure

Christoffel words

Recursive computation of the First Lyndon Prefix (FLF),

If a > b then the Lyndon fact. starts by I_0^k

1 Let l_0 be a Lyndon prefix and k be it's number of repetitions.

2 Identify at the first letter that is not that same than in I_0 .

3 If its smaller than l_0 is FLF, otherwise, $l_0^k pb$ is a Lyndon word.

Definition

Periodic structure

Christoffel words

Recursive computation of the First Lyndon Prefix (FLF),

If a > b then the Lyndon fact. starts by I_0^k

1 Let l_0 be a Lyndon prefix and k be it's number of repetitions.

2 Identify at the first letter that is not that same than in I_0 .

3 If its smaller than l_0 is FLF, otherwise, $l_0^k pb$ is a Lyndon word.

Definition

Periodic structure

Christoffel words

Recursive computation of the First Lyndon Prefix (FLF),

If a > b then the Lyndon fact. starts by I_0^k

1 Let l_0 be a Lyndon prefix and k be it's number of repetitions.

2 Identify at the first letter that is not that same than in I_0 .

3 If its smaller than l_0 is FLF, otherwise, $l_0^k pb$ is a Lyndon word.

Definition

Periodic structure

Christoffel words

Recursive computation of the First Lyndon Prefix (FLF),

If a > b then the Lyndon fact. starts by I_0^k

$$\underbrace{ \begin{smallmatrix} 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ \hline I_0 & I_1 \\ \hline I_0 & I_1 \\ \hline I_1 \\ \hline$$

1 Let l_0 be a Lyndon prefix and k be it's number of repetitions.

2 Identify at the first letter that is not that same than in I_0 .

3 If its smaller than l_0 is FLF, otherwise, $l_0^k pb$ is a Lyndon word.

Definition

Periodic structure

Christoffel words

Recursive computation of the First Lyndon Prefix (FLF),

If a > b then the Lyndon fact. starts by I_0^k

1 Let l_0 be a Lyndon prefix and k be it's number of repetitions.

2 Identify at the first letter that is not that same than in I_0 .

3 If its smaller than l_0 is FLF, otherwise, $l_0^k pb$ is a Lyndon word.

Definition

Periodic structure

Christoffel words

Recursive computation of the First Lyndon Prefix (FLF),

If a > b then the Lyndon fact. starts by I_0^k

1 Let l_0 be a Lyndon prefix and k be it's number of repetitions.

2 Identify at the first letter that is not that same than in I_0 .

3 If its smaller than l_0 is FLF, otherwise, $l_0^k pb$ is a Lyndon word.

Definition

Periodic structure

Christoffel words

Recursive computation of the First Lyndon Prefix (FLF),

If a > b then the Lyndon fact. starts by I_0^k

1 Let l_0 be a Lyndon prefix and k be it's number of repetitions.

2 Identify at the first letter that is not that same than in I_0 .

3 If its smaller than l_0 is FLF, otherwise, $l_0^k pb$ is a Lyndon word.

Definition

Periodic structure

Christoffel words

Recursive computation of the First Lyndon Prefix (FLF),

If a > b then the Lyndon fact. starts by I_0^k

1 Let l_0 be a Lyndon prefix and k be it's number of repetitions.

2 Identify at the first letter that is not that same than in I_0 .

3 If its smaller than l_0 is FLF, otherwise, $l_0^k pb$ is a Lyndon word.

Definition

Periodic structure

Christoffel words

Recursive computation of the First Lyndon Prefix (FLF),

If a > b then the Lyndon fact. starts by I_0^k

1 Let l_0 be a Lyndon prefix and k be it's number of repetitions.

2 Identify at the first letter that is not that same than in I_0 .

3 If its smaller than l_0 is FLF, otherwise, $l_0^k pb$ is a Lyndon word.

Definition

Periodic structure

Christoffel words

Recursive computation of the First Lyndon Prefix (FLF),

If a > b then the Lyndon fact. starts by I_0^k

1 Let l_0 be a Lyndon prefix and k be it's number of repetitions.

2 Identify at the first letter that is not that same than in I_0 .

3 If its smaller than l_0 is FLF, otherwise, $l_0^k pb$ is a Lyndon word.

Definition

Periodic structure

Christoffel words

Recursive computation of the First Lyndon Prefix (FLF),

If a > b then the Lyndon fact. starts by I_0^k

1 Let l_0 be a Lyndon prefix and k be it's number of repetitions.

2 Identify at the first letter that is not that same than in I_0 .

3 If its smaller than l_0 is FLF, otherwise, $l_0^k pb$ is a Lyndon word.

Definition

Periodic structure

Christoffel words

4 ロト 4 個 ト 4 差 ト 4 差 ト 差 20 0 0
15 / 35

Recursive computation of the First Lyndon Prefix (FLF),

If a > b then the Lyndon fact. starts by I_0^k

1 Let l_0 be a Lyndon prefix and k be it's number of repetitions.

2 Identify at the first letter that is not that same than in I_0 .

3 If its smaller than l_0 is FLF, otherwise, $l_0^k pb$ is a Lyndon word.

Definition

Periodic structure

Christoffel words

Duval algorithm

4 ロト 4 個 ト 4 差 ト 4 差 ト 差 20 0 0
15 / 35

Recursive computation of the First Lyndon Prefix (FLF),

If a > b then the Lyndon fact. starts by l_0^k

1 Let l_0 be a Lyndon prefix and k be it's number of repetitions.

2 Identify at the first letter that is not that same than in I_0 .

3 If its smaller than l_0 is FLF, otherwise, $l_0^k pb$ is a Lyndon word.

Definition

Periodic structure

Christoffel words

Digital convexity test

Duval algorithm

4 ロト 4 個 ト 4 差 ト 4 差 ト 差 20 0 0
15 / 35

Recursive computation of the First Lyndon Prefix (FLF),

If a > b then the Lyndon fact. starts by l_0^k

1 Let l_0 be a Lyndon prefix and k be it's number of repetitions.

2 Identify at the first letter that is not that same than in I_0 .

3 If its smaller than l_0 is FLF, otherwise, $l_0^k pb$ is a Lyndon word.

Definition

Periodic structure

Christoffel words

Digital convexity test

Duval algorithm

Recursive computation of the First Lyndon Prefix (FLF),

If a > b then the Lyndon fact. starts by I_0^k

- **1** Let l_0 be a Lyndon prefix and k be it's number of repetitions.
- 2 Identify at the first letter that is not that same than in I_0 .
- (e) If its smaller than l_0 is FLF, otherwise, $l_0^k pb$ is a Lyndon word. When comparing two different letters, let $l_0 = (u, v)$:
 - if |pb| = |v| then

Digital

test

convexity

- a = 0 and b = 1 and l'_0 is a Christoffel word.
- if $|pb| \neq |v|$ and a = 1 and b = 0 then l_0 is the first edge of the convex hull.
- if |pb| ≠ |v| and a = 0 and b = 1 then Shape is not convex.

From Euclid to Christoffel

Alternative construction Part II

Construction guided by Euclid

5 From Euclid to Christoffel

6 Alternative construction

◆□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

From Euclid to Christoffel

Alternative constructior

Stern-Brocot tree 1 $\frac{1}{0}$ 1 $\frac{1}{2}$ $\frac{2}{3}$ $\frac{3}{2}$ 3 ±3 25 3 5 $\frac{3}{4}$ $\frac{4}{3}$ $\frac{1}{4}$ 53 $\frac{5}{2}$ $\frac{4}{1}$ $\frac{4}{5}$ 7

Euclid Algorithm

Euclid algorithm	Approximation
(<u>7</u> ,9)	(1, 1)
\downarrow	\downarrow
(7, <u>2</u>)	(1,2)
\downarrow	\downarrow
(5, <u>2</u>)	(2,3)
\downarrow	\downarrow
(3, <u>2</u>)	(3,4)
\downarrow	\downarrow
(<u>1</u> , 2)	(4,5)
\downarrow	\downarrow
(1, 1)	(7,9)

<ロ > < 部 > < 言 > < 言 > 言 2000 17/35

Matricial view

From Euclid to Christoffel

> Alternative construction

	Euclid algorithm	Approx.
n	Vn	an
0	(<u>7</u> ,9)	(1,1)
1	↓ (7, <u>2</u>)	↓ (1,2)
2	↓ (5, <u>2</u>)	↓ (2,3)
3	↓ (3, <u>2</u>)	↓ (3,4)
4	↓ (<u>1</u> ,2)	↓ (4,5)
5	↓ (1,1)	↓ (7,9)

Euclid algorithm
Given a vector
$$(x, y)$$
, return
• $\begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix}$ if $x < y$,
• $\begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$ if $x > y$,
• stop if $x = y$.

Given a vector $v \in (\mathbb{N} \setminus \{0\})^2$, let :

•
$$v_0 = v$$
,
• For all $n \ge 1$:
 $\begin{cases} M_n = \text{Euclid}(v_{n-1}) \\ v_n = M_n v_{n-1}. \end{cases}$

Matricial view

From Euclid to Christoffel

Alternative construction

	Euclid algorithm	Approx.
n	Vn	an
0	(<u>7</u> ,9)	(1,1)
1	↓ (7, <u>2</u>)	↓ (1,2)
2	↓ (5, <u>2</u>)	↓ (2,3)
3	↓ (3, <u>2</u>)	↓ (3,4)
4	↓ (<u>1</u> ,2)	↓ (4,5)
5	\downarrow (1, 1)	↓ (7,9)

Euclid algorithm Given a vector (x, y), return • $\begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix}$ if x < y, • $\begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$ if x > y, • stop if x = y.

Given a vector $v \in (\mathbb{N} \setminus \{0\})^2$, let :

•
$$v_0 = v$$
,
• For all $n \ge 1$:
$$\begin{cases} M_n = \operatorname{Euclid}(v_{n-1}) \\ v_n = M_n v_{n-1}. \end{cases}$$

Property

•
$$v_n = M_n M_{n-1} \cdots M_1 v$$

•
$$a_n = M_1^{-1} M_2^{-1} \cdots M_n^{-1} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

4 日) 4 日) 4 三) 4 三) 4 三) 18 / 35
18 / 35

<ロト<日本</th>

From Euclid to Christoffel

Alternative construction

Lemma
Let
$$A, B, C$$
 be Christoffel words such that $C = (A, B)$ and $\overrightarrow{C} = a_n$.
Let $\overrightarrow{A} = (A_x, A_y), \ \overrightarrow{B} = (B_x, B_y)$, then:
 $M_1^\top M_2^\top \cdots M_n^\top = \begin{bmatrix} A_x & -B_x \\ -A_y & B_y \end{bmatrix}$

Proof. By recurrence. True for n = 0, $Id = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$. Suppose true for n,

◆□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

From Euclid to Christoffel

Alternative construction

Lemma
Let
$$A, B, C$$
 be Christoffel words such that $C = (A, B)$ and $\overrightarrow{C} = a_n$.
Let $\overrightarrow{A} = (A_x, A_y)$, $\overrightarrow{B} = (B_x, B_y)$, then:
 $M_1^{\top} M_2^{\top} \cdots M_n^{\top} = \begin{bmatrix} A_x & -B_x \\ -A_y & B_y \end{bmatrix}$

Proof. By recurrence. True for n = 0, $Id = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$. Suppose true for n,

$$(A, B)$$

$$(A, AB)$$

$$(AB, B)$$

$$(AB, B)$$

$$M_{1}^{\top} \cdots M_{n+1}^{\top} = \begin{bmatrix} A_{x} & -B_{x} \\ -A_{y} & B_{y} \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} A_{x} & -A_{x} - B_{x} \\ -A_{y} & A_{y} + B_{y} \end{bmatrix}.$$

$$M_{1}^{\top} \cdots M_{n}^{\top} e_{1} = (A_{x}, -A_{y})$$

$$M_{1}^{\top} \cdots M_{n}^{\top} e_{2} = (-B_{x}, B_{y})$$

The Translation-Union Construction

From Euclid to Christoffel

Alternative construction

Construction [Domenjoud, Vuillon 12]. [Berthé, Jamet, Jolivet, P. 2013] Let $v_0 = v$, $B_0 = \{0\}$ and for all n > 1let : M_n : the matrix selected from v_{n-1} , $v_n = M_n v_{n-1}$ δ_n : the index of the coordinate of v_{n-1} that is subtracted. $T_n = M_1^\top \cdots M_n^\top e_{\delta_n}, \qquad (translation)$ $B_n = B_{n-1} \cup (T_n + B_{n-1}), \qquad (body)$ $H_n = \sum_{i \in \{1, \dots, n\}} T_i$, (highest point) $L_n = H_n + \{ M_1^\top \cdots M_n^\top e_i \}.$ (legs)

Note that:

 $H_n \in B_n,$ $L_n \cap B_n = \emptyset.$ $\bullet \in B_n, \quad \bigcirc \in L_n$

$$v_{2} = (1, 1), \delta_{2} = 2$$

$$a_{2} = (2, 3)$$

$$T_{2} = (-1, 1)$$

$$H_{2} = (0, 1),$$

$$L_{1} = \{(2, -1), (-1, 1)\}.$$

The Translation-Union Construction

From Euclid to Christoffel

Alternative construction

Property

The points of $B_n \cup L_n$ for the Christoffel word of vector a_n . Moreover, let $\{x, y\} = L_n$ then $\langle x, a_n \rangle = \langle y, a_n \rangle$.

The fully subtractive algorithm

Part III

Generalization to higher dimensions

A general construction

8 The fully subtractive algorithm

3D continued fraction algorithms

A general construction

The fully subtractive algorithm **Euclid** algorithm : given two number subtract the smaller to the larger. (7,9) \rightarrow (7,2) \rightarrow (5,2) \rightarrow (3,2) \rightarrow (1,2) \rightarrow (1,1) \rightarrow (1,0)

3D continued fraction algorithms

A general construction

The fully subtractive algorithm **Euclid** algorithm : given two number subtract the smaller to the larger. (7,9) \rightarrow (7,2) \rightarrow (5,2) \rightarrow (3,2) \rightarrow (1,2) \rightarrow (1,1) \rightarrow (1,0)

Given three numbers :

- Selmer : subtract the smallest to the largest. $(3,7,5) \rightarrow (3,4,5) \rightarrow (3,4,2) \rightarrow (3,2,2) \rightarrow (1,2,2) \rightarrow (1,2,0) \rightarrow (1,1,0) \rightarrow (1,0,0).$
- Brun : subtract the second largest to the largest. $(3,7,5) \rightarrow (3,2,5) \rightarrow (3,2,2) \rightarrow (1,2,2) \rightarrow (1,2,0) \rightarrow (1,1,0) \rightarrow (1,0,0).$
- Fully subtractive : subtract the smallest to the two others. $(3,7,5) \rightarrow (3,4,2) \rightarrow (1,2,2) \rightarrow (1,1,1) \rightarrow (1,0,0).$
- **Poincaré** : subtract the smallest to the mid and the mid to the largest.

 $(\mathbf{3},\mathbf{7},\mathbf{5}) \rightarrow (\mathbf{3},\mathbf{2},\mathbf{2}) \rightarrow (\mathbf{1},\mathbf{2},\mathbf{0}) \rightarrow (\mathbf{1},\mathbf{1},\mathbf{0}) \rightarrow (\mathbf{1},\mathbf{0},\mathbf{0}).$

• Arnoux-Rauzy : subtract the sum of the two smallest to the largest (not always possible).

 $(3, 7, 5) \rightarrow \text{impossible}.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣

The Translation-Union Construction

A general construction

The fully subtractive algorithm

Construction

Let $v_0=v,\ B_0=\{0\}$ and for all $n\geq 1$ let :			
M_n : the matrix selected from v_{n-1} ,			
$v_n = M_n v_{n-1}$			
δ_n : the index of the coordinate of \mathbf{v}_{n-1} that is subtracted,			
$T_n = M_1^\top \cdots M_n^\top e_{\delta_n},$	(translation)		
$B_n = B_{n-1} \cup (T_n + B_{n-1})$	_1), (body)		
$H_n = \sum_{i \in \{1,\ldots,n\}} T_i,$	(highest point)		
$L_n = H_n + \{M_1^\top \cdots M_n^\top\}$	e_i } (legs)		

The Translation-Union Construction

A general construction

The fully subtractive algorithm

Construction

Let $v_0 = v$, $B_0 = \{\mathbf{0}\}$ and for all $n \geq 1$ let :

 M_n : the matrix selected from v_{n-1} ,

 $v_n = M_n v_{n-1}$

 $\delta_n: \mbox{ the index of the coordinate of } v_{n-1} \mbox{ that is subtracted,} \label{eq:linear}$

 $T_n = M_1^\top \cdots M_n^\top e_{\delta_n}, \qquad (translation)$

 $B_n = B_{n-1} \cup (T_n + B_{n-1}), \qquad (body)$

$$H_n = \sum_{i \in \{1,...,n\}} T_i, \quad (highest point)$$

$$L_n = H_n + \{ M_1^\top \cdots M_n^\top e_i \}.$$
 (legs

Property

If the action of M_n is to subtract a coordinate to at least one other coordinate while keeping it positive, then $B_n \in \mathcal{P}(v, 0)$.

 $\begin{array}{l} {\rm Proof}: \ \langle T_n, v\rangle = \langle M_1^\top \ldots M_n^\top e_{\delta_n}, v\rangle = \\ \langle e_{\delta_n}, M_n \cdots M_1 v\rangle = \langle e_{\delta_n}, v_n\rangle \text{ is equal to} \\ {\rm the value of the coordinate that is} \\ {\rm subtracted.} \end{array}$

Let $x \in B_n$, then $x = \sum_{i \in I} T_i$ for some $I \subset \{1, \dots, n\}$ and $0 < \langle x, v \rangle < ||v||_1$

4 ロト 4 部 ト 4 差 ト 4 差 ト 差 24 / 35
24 / 35

Construction using fully Subtractive

The fully subtractive algorithm :

Subtract the smallest coordinate to the two others.

The matrices are :

The fully subtractive algorithm

 $\left[\begin{array}{rrrr}1&0&0\\-1&1&0\\-1&0&1\end{array}\right], \left[\begin{array}{rrrr}1&-1&0\\0&1&0\\0&-1&1\end{array}\right], \left[\begin{array}{rrrr}1&0&-1\\0&1&-1\\0&0&1\end{array}\right]$

Construction using fully Subtractive

The fully subtractive algorithm :

Subtract the smallest coordinate to the two others.

The matrices are :

The fully subtractive algorithm

$$\left[\begin{array}{rrrrr}1&0&0\\-1&1&0\\-1&0&1\end{array}\right],\left[\begin{array}{rrrrr}1&-1&0\\0&1&0\\0&-1&1\end{array}\right],\left[\begin{array}{rrrrr}1&0&-1\\0&1&-1\\0&0&1\end{array}\right]$$

Definition

Let \mathcal{K} be the set of vectors v such $\mathbf{FS}^{N}(v) = (1, 1, 1)$ for some $N \ge 1$.

•
$$\mathcal{K} \ni (1,2,2) \xrightarrow{\mathsf{FS}} (1,1,1)$$

•
$$\mathcal{K} \not\supseteq (2,2,5) \xrightarrow{\mathsf{FS}} (0,2,3)$$

The fully subtractive algorithm

Theorem ([Domenjoud, Vuillon 12]) When using the fully subtractive algorithm, the graph of B_n is a tree.

≣ × ≡ × ≡ 🔗

A general construction

The fully subtractive algorithm

<ロト<日</th>
 ・< 目</th>
 うのの

 28/35

A general construction

The fully subtractive algorithm Property Using Fully Subtractive on $v \in \mathcal{K}$, let N be such that $v_N = (1, 1, 1)$ and so $a_N = v$: **1** $B_N \cup L_N$ is connected. **2** B_N has exactly one point at each height from 0 to $\left\lfloor \frac{\|v\|_1}{2} \right\rfloor - 1$ **3** All points of L_N have height $\left\lfloor \frac{\|v\|_1}{2} \right\rfloor$

A general construction

The fully subtractive algorithm Property Using Fully Subtractive on $v \in K$, let N be such that $v_N = (1, 1, 1)$ and so $a_N = v$: **a** $B_N \cup L_N$ is connected. **a** B_N has exactly one point at each height from 0 to $\left\lfloor \frac{\|v\|_1}{2} \right\rfloor - 1$ **b** All points of L_N have height $\left\lfloor \frac{\|v\|_1}{2} \right\rfloor$

<ロト<日</th>
 ・< 目</th>
 うのの

 28/35

1. B_n is a tree.

A general construction

The fully subtractive algorithm

Property Using Fully Subtractive on $v \in K$, let N be such that $v_N = (1, 1, 1)$ and so $a_N = v$: **1** $B_N \cup L_N$ is connected. **2** B_N has exactly one point at each height from 0 to $\left\lfloor \frac{\|v\|_1}{2} \right\rfloor - 1$ **3** All points of L_N have height $\left\lfloor \frac{\|v\|_1}{2} \right\rfloor$

1. B_n is a tree.

2.
$$v = v_0 \xrightarrow{FS} v_1 \xrightarrow{FS} \cdots \xrightarrow{FS} v_N = (1, 1, 1)$$

The height of each T_i is equal to the coordinate that has been subtracted to the two other coordinates.

(□) < □) < Ξ) < Ξ) < Ξ) Ξ < 2;</p>

$$\|v_n\|_1 = \|v_{n-1}\|_1 - 2\langle T_n, v \rangle.$$

A general construction

The fully subtractive algorithm

Property

Using Fully Subtractive on $v \in \mathcal{K}$, let N be such that $v_N = (1, 1, 1)$ and so $a_N = v$:

1 $B_N \cup L_N$ is connected.

2 B_N has exactly one point at each height from 0 to

$$\frac{\|\boldsymbol{v}\|_1}{2} \right] - 1$$

• All points of L_N have height $\left|\frac{\|v\|_1}{2}\right|$

1. B_n is a tree.

2.
$$v = v_0 \xrightarrow{\mathsf{FS}} v_1 \xrightarrow{\mathsf{FS}} \cdots \xrightarrow{\mathsf{FS}} v_N = (1, 1, 1)$$

The height of each T_i is equal to the coordinate that has been subtracted to the two other coordinates.

$$\|v_n\|_1 = \|v_{n-1}\|_1 - 2\langle T_n, v \rangle.$$
3. $L_n = H_n + \{M_1^T \cdots M_n^T e_i\}$ and $\langle M_1^T \cdots M_N^T e_i, v \rangle = \langle e_i, M_N \cdots M_1 v \rangle = \langle e_i, v_N \rangle = \langle e_i, (1, 1, 1) \rangle = 1.$

The fully subtractive algorithm

$$kev = (6, 8, 11), \left| \frac{\|v\|_1}{2} \right| = 12$$

From pattern to digital plane

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The fully subtractive algorithm

$$kev = (6, 8, 11), \left| \frac{\|v\|_1}{2} \right| = 12$$

From pattern to digital plane

The fully subtractive algorithm

$$kev = (6, 8, 11), \left| \frac{\|v\|_1}{2} \right| = 12$$

From pattern to digital plane

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The set \mathcal{K}

I he fully subtractive algorithm

◆□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

A general construction

The fully subtractive algorithm

> Let $v \in (\mathbb{N} \setminus \{0\})^3$ such that $v \notin \mathcal{K}$, then either : **1** $\mathbf{FS}^n(v) = (g, g, g)$ with $g \ge 2$. **2** $\mathbf{FS}^n(v) = (a, a, b)$ with a < b so that $\mathbf{FS}((a, a, b)) = (0, a, b - a)$. **3** $\mathbf{FS}^n(v) = (a, b, c)$ with $a + b \le c$.

◆□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

A general construction

The fully subtractive algorithm

> Let $v \in (\mathbb{N} \setminus \{0\})^3$ such that $v \notin \mathcal{K}$, then either : **1** $\mathbf{FS}^n(v) = (g, g, g)$ with $g \ge 2$. **2** $\mathbf{FS}^n(v) = (a, a, b)$ with a < b so that $\mathbf{FS}((a, a, b)) = (0, a, b - a)$. **3** $\mathbf{FS}^n(v) = (a, b, c)$ with $a + b \le c$.

Solution:

1 Then
$$g = \gcd(v)$$
, use $v/g \in \mathcal{K}$.

<ロ > < 団 > < 臣 > < 臣 > < 臣 > 臣 31/35

A general construction

The fully subtractive algorithm

> Let $v \in (\mathbb{N} \setminus \{0\})^3$ such that $v \notin \mathcal{K}$, then either : **1** $\mathbf{FS}^n(v) = (g, g, g)$ with $g \ge 2$. **2** $\mathbf{FS}^n(v) = (a, a, b)$ with a < b so that $\mathbf{FS}((a, a, b)) = (0, a, b - a)$. **3** $\mathbf{FS}^n(v) = (a, b, c)$ with $a + b \le c$.

Solution:

- 1 Then $g = \operatorname{gcd}(v)$, use $v/g \in \mathcal{K}$.
- 2 Do not use FS...
- Bo not use FS...

A general construction

The fully subtractive algorithm

> Let $v \in (\mathbb{N} \setminus \{0\})^3$ such that $v \notin \mathcal{K}$, then either : **a** $FS^n(v) = (g, g, g)$ with $g \ge 2$. **a** $FS^n(v) = (a, a, b)$ with a < b so that FS((a, a, b)) = (0, a, b - a). **a** $FS^n(v) = (a, b, c)$ with $a + b \le c$.

Solution:

- 1 Then $g = \gcd(v)$, use $v/g \in \mathcal{K}$.
- 2 Do not use FS...
- 3 Do not use FS...

... ok but what else ?

<ロ > < 団 > < 臣 > < 臣 > < 臣 > 臣 31/35

Vectors not in $\ensuremath{\mathcal{K}}$

A general constructior

The fully subtractive algorithm Idea : Use hybrid algorithm, suppose $a \leq b \leq c$,

$$(a, b, c) = \begin{cases} \mathsf{FS}((a, b, c)) \text{ if } a \neq b \text{ and } a + b \leq c, \\ \mathsf{Brun}((a, b, c)) \text{ otherwise.} \end{cases}$$

Brun: subtract the second biggest coordinate to the biggest one.

The hybrid FS+Brun algorithm

A general construction

The fully subtractive algorithm

Property ([Lafrenière, Jamet, P.)]

Using the hybrid **FS+Brun** algorithm, for all vector $v \in (\mathbb{N} \setminus \{0\})^3$

- **1** $\exists N \text{ such that } v_N = (1, 1, 1) \text{ (or gcd...)}.$
- 2 Vectors of L_n have same height, (providing period vectors).
- **3** $B_n \cup L_n$ is connected but in general not a tree.
- $\left\lfloor \frac{\|\mathbf{v}\|_1}{2} \right\rfloor 1 \leq \langle H_N \rangle < \|\mathbf{v}\|_1.$

(3) There is a least one point at each height from 0 to $\langle H_N \rangle$ but in general no unicity.

Conclusion

<ロト<日本</th>
 ・< 国ト<</th>
 ・< 国ト</th>
 ・< 国</th>
 ののの

 34/35

A general construction

The fully subtractive algorithm

Good:

- Generalization of Christoffel words to higher dimensions.
- Construction is recursive and based on continued fraction algorithms.
- Construction of the periodic pattern of the digital plane for \mathcal{K} .

Problems: Open questions :

- Provide a gcd algorithm that builds minimal patterns for \mathcal{K}^{C} .
- Give a geometrical interpretation of the patterns produced by the hybrid algorihtm.
- Control the anisotropy of the patterns (avoid stretched forms in favor of *potato-likeness*).
- Apply recursive structure to image analysis algorithms.

The fully subtractive algorithm

Merci