Recursive structure of digital lines and planes in the context of image analysis

Xavier Provençal<br>Laboratoire de Mathématiques<br>Université de Savoie

Journées Montoires
September 25, 2014, Nancy


# Outline 

(1) Image analysis
(2) Recursive structure of digital lines
(3) Recursive structure of digital planes

## Outline

(1) Image analysis
(2) Recursive structure of digital lines
(3) Recursive structure of digital planes
(Why do we care)
(Everything is just great in 2D)
(How about 3D ?)

## Part I

## Image analysis

(1) Shape analysis
(2) DSS on the boundary of digital shapes

## Image analysis

Definition (Wikipedia)
Image analysis is the extraction of meaningful information from images; mainly from digital images by means of digital image processing techniques.

## Definition (Wikipedia)

Image analysis is the extraction of meaningful information from images; mainly from digital images by means of digital image processing techniques.


Segmentation


3D reconstruction
Optical character recognition
OCR

## Digitalization

Digitization: $\operatorname{Dig}(P)=P \cap \mathbb{Z}^{d}$.


## Digitalization

Digitization : $\operatorname{Dig}(P)=P \cap \mathbb{Z}^{d}$.


## Digitalization

Digitization : $\operatorname{Dig}(P)=P \cap \mathbb{Z}^{d}$.

## Digitalization

Digitization : $\operatorname{Dig}(P)=P \cap \mathbb{Z}^{d}$


## Digitalization

Digitization : $\operatorname{Dig}(P)=P \cap \mathbb{Z}^{d}$.


Given $\operatorname{Dig}(P)$, what can we say about $P$ ?

- Convexity ?
- Area ?
- Perimeter ?
- Curvature ?


## Digitalization

## Digitization : $\operatorname{Dig}(P)=P \cap \mathbb{Z}^{d}$



Given $\operatorname{Dig}(P)$, what can we say about $P$ ?

- Convexity ?
- Area ?
- Perimeter ?
- Curvature ?



## Digital convexity

## Definition

A digital set $D \subset Z^{d}$ is digitally convex if

- $\operatorname{Dig}(\operatorname{Conv}(D))=D$.


Definitions and characterizations :

- [Minsky and Papert 1969]
- [Sklansky 1970]
- [Kim, Rosenfeld 1981]
- [Hübler, Klette, Voss 1981]
- [Chassery 1983]
- ...
- [Brlek, Lachaud, P., Reutenauer 2009]


## DSS on the boundary of a shape

## Definition

A Digital Straight Segment (DSS) is, equivalently :

- Finite and connected part of a Digital Straight Line.
- A finite factor of a Sturmian word.
- A finite 1-balanced word.



## Tangential cover

 boundaryDefinition ([Feschet, Tougne 99])
The tangential cover of a discrete shape is the sequence of all maximal DSS on its boundary.


Theorem ([Debled-Rennesson, Reveilles 1995][Lachaud, Vialard, de Vieilleville 2007])
The computation of the tangential cover take a time in $\mathcal{O}(n)$ where $n$ is the number of points on the boundary of the shape.

Applications of the tangential cover include :

- Convexity test
[Debled-Rennesson, Reiter-Doerksen 04]
- Tangent estimation [Feschet, Tougne 99], [Lachaud, de Vieilleville 07]
- Length estimation
[Lachaud, de Vieilleville 07]
- Curvature estimation
[Lachaud, Kerautret, Naegel 08]
- Automatic noise detection
[Lachaud, Kerautret 12]


## Part II

## Recursive structure of digital lines

(3) Christoffel words
(4) Digital convexity
(5) Algorithms

## Christoffel words

Definition ([Christoffel 1875])
A Christoffel word codes digital path right below a segments between two consecutive integer points

|  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |

## Christoffel words

Definition ([Christoffel 1875])
A Christoffel word codes digital path right below a segments between two consecutive integer points


## Christoffel words

Definition（［Christoffel 1875］）
A Christoffel word codes digital path right below a segments between two consecutive integer points


## Christoffel words

Definition ([Christoffel 1875])
A Christoffel word codes digital path right below a segments between two consecutive integer points

$w=00100100101$ is the Christoffel word of slope $4 / 7$.

## Christoffel words

## Definition ([Christoffel 1875])

A Christoffel word codes digital path right below a segments between two consecutive integer points

$w=001 \cdot 00100101$ is the Christoffel word of slope 4/7.

Theorem ([Borel, Laubie 93])
Any Christoffel word, other than 0 and 1, can be written in a unique way as a product of two Christoffel words.

This is called the standard factorization, noted $w=(u, v)$.

## Christoffel Tree

If $(u, v)$ is a standard factorization, then $(u, u v)$ and $(u v, v)$ are standard factorizations of Christoffel words.

## Christoffel Tree

If $(u, v)$ is a standard factorization, then $(u, u v)$ and ( $u v, v$ ) are standard factorizations of Christoffel words.

The Christoffel Tree is the tree obtained, starting from $(0,1)$, using the rule :


## Christoffel Tree

If $(u, v)$ is a standard factorization, then $(u, u v)$ and ( $u v, v$ ) are standard factorizations of Christoffel words.

The Christoffel Tree is the tree obtained, starting from $(0,1)$, using the rule :


## Theorem

Every Christoffel word appears exactly once in the Christoffel Tree.


## Stern-Brocot Tree

Christoffel tree
Stern-Brocot tree.


Every irreducible fraction appears exactly once in the Stern-Brocot tree.

## Stern-Brocot Tree

Christoffel tree


Stern-Brocot tree.


Every irreducible fraction appears exactly once in the Stern-Brocot tree.

## Stern-Brocot Tree

Christoffel tree


Stern-Brocot tree.


Every irreducible fraction appears exactly once in the Stern-Brocot tree.

## Recursive formula

## Theorem ([Berstel 92])

The Christoffel word $c_{n}$ of slope $\left[z_{0} ; z_{1}, \ldots, z_{n}\right]$ is given recursively by :

$$
c_{n}=\left\{\begin{array}{l}
c_{2 m-2} c_{2 m-1}^{z_{2 m}} \text { if } n=2 m, \\
c_{2 m}^{z_{2 m+1}} c_{2 m-1} \text { if } n=2 m+1 .
\end{array} \quad \text { where } c_{-1}=1, \text { and } c_{-2}=0\right.
$$

Example : 3/4 $=[0 ; 1,3]$,

$$
\begin{array}{ll}
c_{-2}=0, & c_{-2}: \bullet \\
c_{-1}=1, & c_{-1}: \bullet \\
c_{0}=c_{-2} \cdot c_{-1}^{0}=0 \cdot(1)^{0}=0, & c_{0}: \bullet(!)^{0}=\bullet \\
c_{1}=c_{0}^{1} \cdot c_{-1}=(0)^{1} \cdot 1=01, & c_{1}:(\bullet)^{1} \cdot \emptyset=0 \\
c_{2}=c_{0} \cdot c_{1}^{3}=0 \cdot(01)^{3}=0010101, & c_{2}: \bullet(\square)^{3}=\varnothing
\end{array}
$$

## Nested prefixes

Corollary
A Christoffel word that admits $w=(u, v)$ as a proper prefix，has a prefix of the form ：$w^{k} v=\left(w, w^{k-1} v\right)$ ．

Identifying the longest prefix that is a Christoffel word：

## Nested prefixes

## Corollary

A Christoffel word that admits $w=(u, v)$ as a proper prefix, has a prefix of the form : $w^{k} v=\left(w, w^{k-1} v\right)$.

Identifying the longest prefix that is a Christoffel word:


| $W$ |  |
| :---: | :---: |
| $u$ | $V$ |

## Nested prefixes

## Corollary

A Christoffel word that admits $w=(u, v)$ as a proper prefix, has a prefix of the form : $w^{k} v=\left(w, w^{k-1} v\right)$.

Identifying the longest prefix that is a Christoffel word:


## Nested prefixes

## Corollary

A Christoffel word that admits $w=(u, v)$ as a proper prefix, has a prefix of the form : $w^{k} v=\left(w, w^{k-1} v\right)$.

Identifying the longest prefix that is a Christoffel word :


| $W^{\prime}$ |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :---: | :---: |
| $W$ |  | $W$ | $V$ |  |  |
| $u$ | $V$ |  |  |  |  |

## Nested prefixes

## Corollary

A Christoffel word that admits $w=(u, v)$ as a proper prefix, has a prefix of the form : $w^{k} v=\left(w, w^{k-1} v\right)$.

Identifying the longest prefix that is a Christoffel word :


## Nested prefixes

## Corollary

A Christoffel word that admits $w=(u, v)$ as a proper prefix, has a prefix of the form : $w^{k} v=\left(w, w^{k-1} v\right)$.

Identifying the longest prefix that is a Christoffel word :


Corollary
A Christoffel word $w=(u, v)$ has a prefix $p 0$ such that $v=p 1$.

## Lexicographic order

Property
Lexicographic order on Christoffel words correspond to the order on the slope


## Lexicographic order

Property
Lexicographic order on Christoffel words correspond to the order on the slope


## Lexicographic order

## Property

Lexicographic order on Christoffel words correspond to the order on the slope


## Lexicographic order

Property
Lexicographic order on Christoffel words correspond to the order on the slope


## Lyndon words

Definition ([Lyndon 54])
A $w$ is a Lyndon word iff for every proper suffix $s$ of $w$,

$$
w<\text { Lex } s
$$

Examples:
(1) $a a b a b$ is Lyndon since $a a b a b<$ Lex $\{a b a b, b a b, a b, b\}$,
(2) $a a b a a b$ is not Lyndon, let $a a b<$ Lex $w$.

## Definition ([Lyndon 54])

A $w$ is a Lyndon word iff for every proper suffix $s$ of $w$,

$$
w<\text { Lex } s
$$

Examples:
(1) $a a b a b$ is Lyndon since $a a b a b<$ Lex $\{a b a b, b a b, a b, b\}$,
(2) $a a b a a b$ is not Lyndon, let $a a b<$ Lex $w$.

Theorem ([Chen, Fox, Lyndon 58])
Every word has a unique factorization as non-increasing Lyndon words
Example :

$$
\begin{aligned}
& 110110110010011000 \\
= & 1 \cdot 1 \cdot 011 \cdot 011 \cdot 0010011 \cdot 0 \cdot 0 \cdot 0 \\
= & (1)^{2} \cdot(011)^{2} \cdot(0010011)^{1} \cdot(0)^{3} .
\end{aligned}
$$

## Combinatorial view of convexity

Theorem ([Brlek, Lachaud, P., Reutenauer 09])
The north-west part of a digital shape is convex iff its Lyndon factorization contains only Christoffel words.

Sketch of the proof :

- Uniqueness of the Lyndon factorization.
- No integer points between a Christoffel word and its convex hull.


110110111010100010010000100010000

$$
\begin{equation*}
=(1)^{2} \cdot 0110111 \cdot(01)^{2} \cdot 001001 \cdot 000010001 . \tag{0}
\end{equation*}
$$

## Combinatorial view of convexity

## Theorem ([Brlek, Lachaud, P., Reutenauer 09])

The north-west part of a digital shape is convex iff its Lyndon factorization contains only Christoffel words.

Sketch of the proof :

- Uniqueness of the Lyndon factorization.
- No integer points between a Christoffel word and its convex hull.



## Duval algorithm

Recursive computation of the First Lyndon Prefix (FLF),

$$
w=
$$

## Duval algorithm

(1) Let $I_{0}$ be a Lyndon prefix and $k$ be it's number of repetitions.

## Duval algorithm


(1) Let $I_{0}$ be a Lyndon prefix and $k$ be it's number of repetitions.
(2) Identify at the first letter that is not that same than in 10 .

## Duval algorithm

Recursive computation of the First Lyndon Prefix (FLF),

$$
a>b \Longrightarrow \underbrace{}
$$

(1) Let $I_{0}$ be a Lyndon prefix and $k$ be it's number of repetitions.
(2) Identify at the first letter that is not that same than in $I_{0}$.
(3) If its smaller than $I_{0}$ is FLF,

## Duval algorithm

Recursive computation of the First Lyndon Prefix (FLF),

$$
b>a \Longrightarrow 1_{0}^{k} p b \text { is a Lyndon prefix }
$$



$$
a>b \Longrightarrow \text { Lyndon fact. starts by } I_{0}^{k}
$$

(1) Let $I_{0}$ be a Lyndon prefix and $k$ be it's number of repetitions.
(2) Identify at the first letter that is not that same than in 10 .
(3) If its smaller than $I_{0}$ is FLF, otherwise, $I_{0}^{k} p b$ is a Lyndon word.

## Duval algorithm

Recursive computation of the First Lyndon Prefix (FLF), $b>a \Longrightarrow 1_{0}^{k} p b$ is a Lyndon prefix


$$
a>b \Longrightarrow \text { Lyndon fact. starts by } I_{0}^{k}
$$

(1) Let $I_{0}$ be a Lyndon prefix and $k$ be it's number of repetitions.
(2) Identify at the first letter that is not that same than in 10 .
(3) If its smaller than $I_{0}$ is FLF, otherwise, $I_{0}^{k} p b$ is a Lyndon word.

## Duval algorithm

Recursive computation of the First Lyndon Prefix (FLF), $b>a \Longrightarrow 1_{0}^{k} p b$ is a Lyndon prefix

$a>b \Longrightarrow$ Lyndon fact. starts by $I_{0}^{k}$

$$
\begin{aligned}
& \downarrow \downarrow \\
& \underset{1_{0}}{0} 0
\end{aligned}
$$

(1) Let $I_{0}$ be a Lyndon prefix and $k$ be it's number of repetitions.
(2) Identify at the first letter that is not that same than in 10 .
(3) If its smaller than $I_{0}$ is FLF, otherwise, $I_{0}^{k} p b$ is a Lyndon word.

## Duval algorithm

Recursive computation of the First Lyndon Prefix (FLF), $b>a \Longrightarrow 1_{0}^{k} p b$ is a Lyndon prefix

$a>b \Longrightarrow$ Lyndon fact. starts by $I_{0}^{k}$
(1) Let $I_{0}$ be a Lyndon prefix and $k$ be it's number of repetitions.
(2) Identify at the first letter that is not that same than in 10 .
(3) If its smaller than $I_{0}$ is FLF, otherwise, $I_{0}^{k} p b$ is a Lyndon word.

## Duval algorithm

Recursive computation of the First Lyndon Prefix (FLF), $b>a \Longrightarrow 1_{0}^{k} p b$ is a Lyndon prefix

$a>b \Longrightarrow$ Lyndon fact. starts by $I_{0}^{k}$

$$
\begin{array}{lllllllllllllllllll}
\downarrow \\
0 & 0 & 1 & \downarrow & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1
\end{array} 0
$$

(1) Let $I_{0}$ be a Lyndon prefix and $k$ be it's number of repetitions.
(2) Identify at the first letter that is not that same than in 10 .
(3) If its smaller than $I_{0}$ is FLF, otherwise, $I_{0}^{k} p b$ is a Lyndon word.

## Duval algorithm

Recursive computation of the First Lyndon Prefix (FLF), $b>a \Longrightarrow 1_{0}^{k} p b$ is a Lyndon prefix

$a>b \Longrightarrow$ Lyndon fact. starts by $I_{0}^{k}$
(1) Let $I_{0}$ be a Lyndon prefix and $k$ be it's number of repetitions.
(2) Identify at the first letter that is not that same than in 10 .
(3) If its smaller than $I_{0}$ is FLF, otherwise, $I_{0}^{k} p b$ is a Lyndon word.

## Duval algorithm

Recursive computation of the First Lyndon Prefix (FLF), $b>a \Longrightarrow 1_{0}^{k} p b$ is a Lyndon prefix


$$
a>b \Longrightarrow \text { Lyndon fact. starts by } I_{0}^{k}
$$

(1) Let $I_{0}$ be a Lyndon prefix and $k$ be it's number of repetitions.
(2) Identify at the first letter that is not that same than in 10 .
(3) If its smaller than $I_{0}$ is FLF, otherwise, $I_{0}^{k} p b$ is a Lyndon word.

## Duval algorithm

Recursive computation of the First Lyndon Prefix (FLF), $b>a \Longrightarrow 1_{0}^{k} p b$ is a Lyndon prefix

$a>b \Longrightarrow$ Lyndon fact. starts by $I_{0}^{k}$

$$
\begin{array}{lllllllllllllllllll}
\downarrow \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0
\end{array} 0
$$

(1) Let $I_{0}$ be a Lyndon prefix and $k$ be it's number of repetitions.
(2) Identify at the first letter that is not that same than in 10 .
(3) If its smaller than $I_{0}$ is FLF, otherwise, $I_{0}^{k} p b$ is a Lyndon word.

## Duval algorithm

Recursive computation of the First Lyndon Prefix (FLF), $b>a \Longrightarrow 1_{0}^{k} p b$ is a Lyndon prefix

$a>b \Longrightarrow$ Lyndon fact. starts by $I_{0}^{k}$

$$
\begin{array}{llllllllllllllllll} 
& \downarrow \\
0 & 0 & 1, & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1
\end{array} 0
$$

(1) Let $I_{0}$ be a Lyndon prefix and $k$ be it's number of repetitions.
(2) Identify at the first letter that is not that same than in 10 .
(3) If its smaller than $I_{0}$ is FLF, otherwise, $I_{0}^{k} p b$ is a Lyndon word.

## Duval algorithm

Recursive computation of the First Lyndon Prefix (FLF), $b>a \Longrightarrow 1_{0}^{k} p b$ is a Lyndon prefix

$a>b \Longrightarrow$ Lyndon fact. starts by $I_{0}^{k}$

(1) Let $I_{0}$ be a Lyndon prefix and $k$ be it's number of repetitions.
(2) Identify at the first letter that is not that same than in 10 .
(3) If its smaller than $I_{0}$ is FLF, otherwise, $I_{0}^{k} p b$ is a Lyndon word.

## Duval algorithm

Recursive computation of the First Lyndon Prefix (FLF), $b>a \Longrightarrow 1_{0}^{k} p b$ is a Lyndon prefix


$$
a>b \Longrightarrow \text { Lyndon fact. starts by } I_{0}^{k}
$$

(1) Let $I_{0}$ be a Lyndon prefix and $k$ be it's number of repetitions.
(2) Identify at the first letter that is not that same than in 10 .
(3) If its smaller than $I_{0}$ is FLF, otherwise, $I_{0}^{k} p b$ is a Lyndon word.

## Duval algorithm

Recursive computation of the First Lyndon Prefix (FLF), $b>a \Longrightarrow 1_{0}^{k} p b$ is a Lyndon prefix


$$
a>b \Longrightarrow \text { Lyndon fact. starts by } I_{0}^{k}
$$

(1) Let $I_{0}$ be a Lyndon prefix and $k$ be it's number of repetitions.
(2) Identify at the first letter that is not that same than in 10 .
(3) If its smaller than $I_{0}$ is FLF, otherwise, $I_{0}^{k} p b$ is a Lyndon word.

## Duval algorithm

Recursive computation of the First Lyndon Prefix (FLF), $b>a \Longrightarrow 1_{0}^{k} p b$ is a Lyndon prefix


$$
a>b \Longrightarrow \text { Lyndon fact. starts by } I_{0}^{k}
$$

$$
\begin{array}{lllllllllllllllll} 
& \stackrel{\downarrow}{\downarrow} \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0
\end{array} 1001
$$

(1) Let $I_{0}$ be a Lyndon prefix and $k$ be it's number of repetitions.
(2) Identify at the first letter that is not that same than in 10 .
(3) If its smaller than $I_{0}$ is FLF, otherwise, $I_{0}^{k} p b$ is a Lyndon word.

## Duval algorithm

Recursive computation of the First Lyndon Prefix (FLF), $b>a \Longrightarrow 1_{0}^{k} p b$ is a Lyndon prefix


$$
a>b \Longrightarrow \text { Lyndon fact. starts by } I_{0}^{k}
$$

(1) Let $I_{0}$ be a Lyndon prefix and $k$ be it's number of repetitions.
(2) Identify at the first letter that is not that same than in 10 .
(3) If its smaller than $I_{0}$ is FLF, otherwise, $I_{0}^{k} p b$ is a Lyndon word.

## Duval algorithm

Recursive computation of the First Lyndon Prefix (FLF), $b>a \Longrightarrow 1_{0}^{k} p b$ is a Lyndon prefix


$$
a>b \Longrightarrow \text { Lyndon fact. starts by } I_{0}^{k}
$$

$$
\begin{array}{llllllllllllllllll} 
& \stackrel{\downarrow}{l} \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\
\hline
\end{array} I_{0}
$$

(1) Let $I_{0}$ be a Lyndon prefix and $k$ be it's number of repetitions.
(2) Identify at the first letter that is not that same than in 10 .
(3) If its smaller than $I_{0}$ is FLF, otherwise, $I_{0}^{k} p b$ is a Lyndon word.

## Duval algorithm

Recursive computation of the First Lyndon Prefix (FLF), $b>a \Longrightarrow 1_{0}^{k} p b$ is a Lyndon prefix


$$
a>b \Longrightarrow \text { Lyndon fact. starts by } I_{0}^{k}
$$

$$
\begin{array}{llllllllllllllllll}
0 & \downarrow \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\
\hline
\end{array} I_{0}
$$

(1) Let $I_{0}$ be a Lyndon prefix and $k$ be it's number of repetitions.
(2) Identify at the first letter that is not that same than in 10 .
(3) If its smaller than $I_{0}$ is FLF, otherwise, $I_{0}^{k} p b$ is a Lyndon word.

## Duval algorithm

Recursive computation of the First Lyndon Prefix (FLF), $b>a \Longrightarrow 1_{0}^{k} p b$ is a Lyndon prefix


$$
a>b \Longrightarrow \text { Lyndon fact. starts by } I_{0}^{k}
$$

$$
\begin{array}{llllllllllllllllll}
0 & \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\
\hline
\end{array} I_{0}
$$

(1) Let $I_{0}$ be a Lyndon prefix and $k$ be it's number of repetitions.
(2) Identify at the first letter that is not that same than in 10 .
(3) If its smaller than $I_{0}$ is FLF, otherwise, $I_{0}^{k} p b$ is a Lyndon word.

## Duval algorithm

Recursive computation of the First Lyndon Prefix (FLF), $b>a \Longrightarrow 1_{0}^{k} p b$ is a Lyndon prefix

$a>b \Longrightarrow$ Lyndon fact. starts by $I_{0}^{k}$
(1) Let $I_{0}$ be a Lyndon prefix and $k$ be it's number of repetitions.
(2) Identify at the first letter that is not that same than in 10 .
(3) If its smaller than $I_{0}$ is FLF, otherwise, $I_{0}^{k} p b$ is a Lyndon word.

## Duval algorithm

Recursive computation of the First Lyndon Prefix (FLF), $b>a \Longrightarrow 1_{0}^{k} p b$ is a Lyndon prefix


$$
a>b \Longrightarrow \text { Lyndon fact. starts by } I_{0}^{k}
$$

(1) Let $I_{0}$ be a Lyndon prefix and $k$ be it's number of repetitions.
(2) Identify at the first letter that is not that same than in 10 .
(3) If its smaller than $I_{0}$ is FLF, otherwise, $I_{0}^{k} p b$ is a Lyndon word.

## Duval algorithm

Recursive computation of the First Lyndon Prefix (FLF), $b>a \Longrightarrow 1_{0}^{k} p b$ is a Lyndon prefix


$$
a>b \Longrightarrow \text { Lyndon fact. starts by } I_{0}^{k}
$$

(1) Let $I_{0}$ be a Lyndon prefix and $k$ be it's number of repetitions.
(2) Identify at the first letter that is not that same than in 10 .
(3) If its smaller than $I_{0}$ is FLF, otherwise, $I_{0}^{k} p b$ is a Lyndon word.

## Duval algorithm

Recursive computation of the First Lyndon Prefix (FLF), $b>a \Longrightarrow 1_{0}^{k} p b$ is a Lyndon prefix


$$
a>b \Longrightarrow \text { Lyndon fact. starts by } I_{0}^{k}
$$

(1) Let $I_{0}$ be a Lyndon prefix and $k$ be it's number of repetitions.
(2) Identify at the first letter that is not that same than in 10 .
(3) If its smaller than $I_{0}$ is FLF, otherwise, $I_{0}^{k} p b$ is a Lyndon word.

## Duval algorithm

Recursive computation of the First Lyndon Prefix (FLF), $b>a \Longrightarrow 1_{0}^{k} p b$ is a Lyndon prefix


$$
a>b \Longrightarrow \text { Lyndon fact. starts by } I_{0}^{k}
$$

(1) Let $I_{0}$ be a Lyndon prefix and $k$ be it's number of repetitions.
(2) Identify at the first letter that is not that same than in 10 .
(3) If its smaller than $I_{0}$ is FLF, otherwise, $I_{0}^{k} p b$ is a Lyndon word.

## Duval algorithm

Recursive computation of the First Lyndon Prefix (FLF), $b>a \Longrightarrow 1_{0}^{k} p b$ is a Lyndon prefix


$$
a>b \Longrightarrow \text { Lyndon fact. starts by } I_{0}^{k}
$$

(1) Let $I_{0}$ be a Lyndon prefix and $k$ be it's number of repetitions.
(2) Identify at the first letter that is not that same than in 10 .
(3) If its smaller than $I_{0}$ is FLF, otherwise, $I_{0}^{k} p b$ is a Lyndon word.

## Duval algorithm

Recursive computation of the First Lyndon Prefix (FLF), $b>a \Longrightarrow 1_{0}^{k} p b$ is a Lyndon prefix

$a>b \Longrightarrow$ Lyndon fact. starts by $I_{0}^{k}$
(1) Let $I_{0}$ be a Lyndon prefix and $k$ be it's number of repetitions.
(2) Identify at the first letter that is not that same than in 10 .
(3) If its smaller than $I_{0}$ is FLF, otherwise, $I_{0}^{k} p b$ is a Lyndon word.

## Duval algorithm

Recursive computation of the First Lyndon Prefix (FLF), $b>a \Longrightarrow 1_{0}^{k} p b$ is a Lyndon prefix


$$
a>b \Longrightarrow \text { Lyndon fact. starts by } I_{0}^{k}
$$

(1) Let $I_{0}$ be a Lyndon prefix and $k$ be it's number of repetitions.
(2) Identify at the first letter that is not that same than in 10 .
(3) If its smaller than $I_{0}$ is FLF, otherwise, $I_{0}^{k} p b$ is a Lyndon word.

## Duval algorithm

Recursive computation of the First Lyndon Prefix (FLF), $b>a \Longrightarrow 1_{0}^{k} p b$ is a Lyndon prefix

$a>b \Longrightarrow$ Lyndon fact. starts by $I_{0}^{k}$
(1) Let $I_{0}$ be a Lyndon prefix and $k$ be it's number of repetitions.
(2) Identify at the first letter that is not that same than in 10 .
(3) If its smaller than $I_{0}$ is FLF, otherwise, $I_{0}^{k} p b$ is a Lyndon word.

## Duval algorithm

Recursive computation of the First Lyndon Prefix (FLF), $b>a \Longrightarrow 1_{0}^{k} p b$ is a Lyndon prefix


$$
a>b \Longrightarrow \text { Lyndon fact. starts by } I_{0}^{k}
$$

(1) Let $I_{0}$ be a Lyndon prefix and $k$ be it's number of repetitions.
(2) Identify at the first letter that is not that same than in 10 .
(3) If its smaller than $I_{0}$ is FLF, otherwise, $I_{0}^{k} p b$ is a Lyndon word.

## Duval algorithm

Recursive computation of the First Lyndon Prefix (FLF), $b>a \Longrightarrow 1_{0}^{k} p b$ is a Lyndon prefix


$$
a>b \Longrightarrow \text { Lyndon fact. starts by } I_{0}^{k}
$$

(1) Let $I_{0}$ be a Lyndon prefix and $k$ be it's number of repetitions.
(2) Identify at the first letter that is not that same than in 10 .
(3) If its smaller than $I_{0}$ is FLF, otherwise, $I_{0}^{k} p b$ is a Lyndon word.

## Duval algorithm

Recursive computation of the First Lyndon Prefix (FLF), $b>a \Longrightarrow 1_{0}^{k} p b$ is a Lyndon prefix


$$
a>b \Longrightarrow \text { Lyndon fact. starts by } I_{0}^{k}
$$

(1) Let $I_{0}$ be a Lyndon prefix and $k$ be it's number of repetitions.
(2) Identify at the first letter that is not that same than in 10 .
(3) If its smaller than $I_{0}$ is FLF, otherwise, $I_{0}^{k} p b$ is a Lyndon word.

## Duval algorithm

Recursive computation of the First Lyndon Prefix (FLF), $b>a \Longrightarrow 1_{0}^{k} p b$ is a Lyndon prefix


$$
a>b \Longrightarrow \text { Lyndon fact. starts by } I_{0}^{k}
$$

$$
\begin{array}{lllllllllllllllllll}
0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
\hline
\end{array}
$$

(1) Let $I_{0}$ be a Lyndon prefix and $k$ be it's number of repetitions.
(2) Identify at the first letter that is not that same than in 10 .
(3) If its smaller than $I_{0}$ is FLF, otherwise, $I_{0}^{k} p b$ is a Lyndon word.

## Duval algorithm

Recursive computation of the First Lyndon Prefix (FLF), $b>a \Longrightarrow 1_{0}^{k} p b$ is a Lyndon prefix


$$
a>b \Longrightarrow \text { Lyndon fact. starts by } I_{0}^{k}
$$

(1) Let $I_{0}$ be a Lyndon prefix and $k$ be it's number of repetitions.
(2) Identify at the first letter that is not that same than in 10 .
(3) If its smaller than $I_{0}$ is FLF, otherwise, $I_{0}^{k} p b$ is a Lyndon word.

## Duval algorithm

Recursive computation of the First Lyndon Prefix (FLF), $b>a \Longrightarrow 1_{0}^{k} p b$ is a Lyndon prefix


$$
a>b \Longrightarrow \text { Lyndon fact. starts by } I_{0}^{k}
$$

$$
\begin{array}{llllllllllllllllllll}
0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0
\end{array} 1
$$

(1) Let $I_{0}$ be a Lyndon prefix and $k$ be it's number of repetitions.
(2) Identify at the first letter that is not that same than in 10 .
(3) If its smaller than $I_{0}$ is FLF, otherwise, $I_{0}^{k} p b$ is a Lyndon word.

Recursive computation of the First Lyndon Prefix (FLF), $b>a \Longrightarrow 1_{0}^{k} p b$ is a Lyndon prefix

$a>b \Longrightarrow$ Lyndon fact. starts by $I_{0}^{k}$

$$
\begin{array}{llllllllllllllllllll}
0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0
\end{array} 1
$$

(1) Let $I_{0}$ be a Lyndon prefix and $k$ be it's number of repetitions.
(2) Identify at the first letter that is not that same than in $I_{0}$.
(3) If its smaller than $I_{0}$ is FLF, otherwise, $I_{0}^{k} p b$ is a Lyndon word.

When comparing two different letters, let $I_{0}=(u, v)$ :

- if $|p|=|v|-1$ then $a=0$ and $b=1$ and $I_{0}^{\prime}$ is a Christoffel word.

Duval++

- if $|p| \neq|v|-1$ and $a=1$ and $b=0$ then $I_{0}$ is the first edge of the convex hull.
- if $|p| \neq|v|-1$ and $a=0$ and $b=1$ then

Convexity test Shape is not convex.

The Duval++ algorithm was indroduced to compute a first order re-

Toolbox based on Duval++ for the computation of the tangential cover are available as OneBalancedWordComputer in the DGtal library.


## Part III

## Recursive structure of digital planes

(6) Digital planes
(7) Continued fractions

8 Construction process
(9) Unified view of Christoffel words and some patches of digital planes

Arithmetic digital planes

Definition ([Reveillès 91], [Forchhammer 89]) Digital plane with normal vector $\boldsymbol{v} \in \mathbb{R}^{3} \backslash\{0\}$, shift $\mu \in \mathbb{R}$ and thickness $\theta$.

$$
\mathcal{P}(\boldsymbol{v}, \mu, \theta)=\left\{\boldsymbol{x} \in \mathbb{Z}^{3} \mid 0 \leq\langle\boldsymbol{v}, \boldsymbol{x}\rangle+\mu<\theta\right\}
$$

In the case where $\theta=\|v\|_{1}$ then $\mathcal{P}$ is called standard.

- Many definitions and characterizations : [Stojmenovic̀, Tosic̀ 69], [Kim 84], [Kaufman 87], [Veelaert 93], [Debled-Rennesson 95], [Andrès, Acharya, Sibata 97], ... [Labbé, Reutenauer 14]
- Recurrent structure : [Vuillon 96], [Arnoux, Berthé, Siegel 04] [Brimkov, Barneva 05], [Berthé 11].
- Topology : [Jamet, Toutant 09], [Domenjoud, Jamet, Toutant 09]

Arithmetic digital planes


Definition ([Reveillès 91], [Forchhammer 89])
Digital plane with normal vector $\boldsymbol{v} \in \mathbb{R}^{3} \backslash\{0\}$, shift $\mu \in \mathbb{R}$ and thickness $\theta$.

$$
\mathcal{P}(\boldsymbol{v}, \mu, \theta)=\left\{\boldsymbol{x} \in \mathbb{Z}^{3} \mid 0 \leq\langle\boldsymbol{v}, \boldsymbol{x}\rangle+\mu<\theta\right\}
$$

In the case where $\theta=\|v\|_{1}$ then $\mathcal{P}$ is called standard.
(we only consider $\mu=0$ )

- Many definitions and characterizations : [Stojmenovic̀, Tosic̀ 69], [Kim 84], [Kaufman 87], [Veelaert 93], [Debled-Rennesson 95], [Andrès, Acharya, Sibata 97], ... [Labbé, Reutenauer 14]
- Recurrent structure : [Vuillon 96], [Arnoux, Berthé, Siegel 04] [Brimkov, Barneva 05], [Berthé 11].
- Topology : [Jamet, Toutant 09], [Domenjoud, Jamet, Toutant 09]


## Continued fractions

- The recursive structure of DSS given by the continued fraction development of its slope.


## Continued fractions

- The recursive structure of DSS given by the continued fraction development of its slope.
- Natural question: "Can we do the same in 3D ?"


## Continued fractions

- The recursive structure of DSS given by the continued fraction development of its slope.
- Natural question: "Can we do the same in 3D ?"
- Answer is: "Yes. . . but its more complicated."


## 3D continued fraction algorithms

Euclide algorithm : given two number subtract the smaller to the larger.

$$
(5,12) \rightarrow(5,7) \rightarrow(5,2) \rightarrow(3,2) \rightarrow(1,2) \rightarrow(1,1) \rightarrow(1,0)
$$

## 3D continued fraction algorithms

Euclide algorithm : given two number subtract the smaller to the larger. $(5,12) \rightarrow(5,7) \rightarrow(5,2) \rightarrow(3,2) \rightarrow(1,2) \rightarrow(1,1) \rightarrow(1,0)$

## Given three numbers :

- Brun : subtract the second largest to the largest.

$$
(3,7,5) \rightarrow(3,2,5) \rightarrow(3,2,2) \rightarrow(1,2,2) \rightarrow(1,2,0) \rightarrow(1,1,0) \rightarrow(1,0,0) .
$$

- Selmer : subtract the smallest to the largest.
$(3,7,5) \rightarrow(3,4,5) \rightarrow(3,4,2) \rightarrow(3,2,2) \rightarrow(1,2,2) \rightarrow(1,2,0) \rightarrow$ $(1,1,0) \rightarrow(1,0,0)$.
- Poincaré : subtract the smallest to the mid and the mid to the largest.

$$
(3,7,5) \rightarrow(3,2,2) \rightarrow(1,2,0) \rightarrow(1,1,0) \rightarrow(1,0,0) .
$$

- Arnoux-Rauzy : subtract the sum of the two smallest to the largest (not always possible).
$(3,7,5) \rightarrow$ impossible.
- Fully subtractive : subtract the smallest to the two others.

$$
(3,7,5) \rightarrow(3,4,2) \rightarrow(1,2,2) \rightarrow(1,1,1) \rightarrow(0,0,1)
$$

- . . .

From CF to digital plane
Given a morphism $\sigma:\{1,2,3\} \mapsto\{1,2,3\}^{*}$,

$$
E_{1}^{*}(\sigma):\left\{\begin{array}{lll}
0 & \mapsto & 0 \\
\bullet & \mapsto & \square \\
\bullet & \mapsto & \bullet
\end{array}\right.
$$

[Ito, Ohtsuki 93], [Ito, Ohtsuki 94], [Arnoux, Ito 01]

$$
\begin{aligned}
& \text { CF algo. } \quad \longrightarrow \quad \text { Matrix } \quad \longrightarrow \quad \text { Word morphism } \\
& \underset{(a, b-a, c-a)}{\downarrow} \quad \longrightarrow \quad\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \quad \longrightarrow \quad \sigma=\left\{\begin{array}{l}
1 \mapsto 1 \\
2 \mapsto 12 \\
3 \mapsto 13
\end{array}\right.
\end{aligned}
$$

From CF to digital plane
Given a morphism $\sigma:\{1,2,3\} \mapsto\{1,2,3\}^{*}$,

$$
E_{1}^{*}(\sigma): \begin{cases}0 & \mapsto \\ 0 & \mapsto\end{cases}
$$

[Ito, Ohtsuki 93], [Ito, Ohtsuki 94], [Arnoux, Ito 01]

$$
\begin{aligned}
& \text { CF algo. } \quad \longrightarrow \quad \text { Matrix } \quad \longrightarrow \quad \text { Word morphism } \\
& \underset{(a, b-a, c-a)}{\downarrow} \quad \longrightarrow \quad\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \quad \longrightarrow \quad \sigma=\left\{\begin{array}{l}
1 \mapsto 1 \\
2 \mapsto 12 \\
3 \mapsto 13
\end{array}\right.
\end{aligned}
$$

Theorem ([Arnoux, Ito 01])
Let $D_{v}$ be the visible faces of the voxels of $\mathcal{P}(v, 0)$, then if $\sigma$ is primitive and unimodular,

$$
E_{1}^{*}(\sigma)\left(D_{v}\right)=D_{M_{\sigma}^{T} v}
$$



- Powerfull framework for the study of digital planes
- Generation : [Arnoux, Berthé, Ito 02] [Fernique 09], [Berthé, Bourdon, Jolivet, Siegel 13], [Furukado, Ito, Yasutomi 13]
- Characterization : [Arnoux, Berthé, Fernique, Jamet 07], [Berthé, Fernique 11]
- Topology :[Berthé, Lacasse, Paquin, P. 13], [Berthé, Jolivet, Siegel 14]
- Still some work to do before practical use.


## A construction guided by Fully Subtractive

planes

The fully subtractive CF algorithm :

$$
\mathbf{F S}((a, b, c))= \begin{cases}(a, b-a, c-a) & \text { if } a=\min (a, b, c) \\ (a-b, b, c-b) & \text { if } b=\min (a, b, c), \\ (a-c, b-c, \quad c) & \text { if } c=\min (a, b, c)\end{cases}
$$

Given a vector $v$, the execution of the algorithm produces a sequence of vectors $\left(v_{n}\right)_{n \geq 0}$ defined by :

- $v_{0}=v$,
- for $n \geq 1, v_{n}=\mathbf{F S}\left(v_{n-1}\right)$.


## A construction guided by Fully Subtractive

$$
\text { FS }((a, b, c))= \begin{cases}(a, \quad b-a, c-a) & \text { if } a=\min (a, b, c), \\ (a-b, \quad b, c-b) & \text { if } b=\min (a, b, c), \\ (a-c, b-c, \quad c) & \text { if } c=\min (a, b, c)\end{cases}
$$

Given a vector $v$, the execution of the algorithm produces a sequence of vectors $\left(v_{n}\right)_{n \geq 0}$ defined by :

- $v_{0}=v$,
- for $n \geq 1, v_{n}=\mathbf{F S}\left(v_{n-1}\right)$.

If at one step, $2\left\|v_{n}\right\|_{\infty}>\left\|v_{n}\right\|_{1}$ (i.e. one coordinate is bigger then the sum of the two others ), then the FS algorithm "fails".
Examples:

| $v_{0}$ | $(1, \pi, 10)$ | $(1, \pi, 20)$ |
| :---: | :---: | :---: |
| $v_{1}$ | $(1, \pi-1,9)$ | $(1, \pi-1,19)$ |
| $v_{2}$ | $(1, \pi-2,8)$ | $(1, \pi-2,18)$ |
| $v_{3}$ | $(1, \pi-3,8)$ | $(1, \pi-3,18)$ |
| $v_{4}$ | $(4-\pi, \pi-3,11-\pi)$ | $(4-\pi, \pi-3,21-\pi)$ |
| $v_{5}$ | $(7-2 \pi, \pi-3,14-2 \pi)$ | $(7-2 \pi, \pi-3,24-2 \pi)$ |
| $\vdots$ | $\vdots$ | $\vdots$ |

## Construction guided by Fully Subtractive

## Definition

Let $\mathcal{K}$ be the set of vectors such that $2\left\|v_{n}\right\|_{\infty}<\|v\|_{1}$ for all $n \geq 0$.
$v \in \mathcal{K} \Longrightarrow \lim _{n \rightarrow \infty} v_{n}=0$.

## Construction guided by Fully Subtractive

Definition ([Domenjoud,Vuillon 12], [Berthé, Jamet, Jolivet, P. 2013]) For all $n \geq 0$, let :

- $M_{n}$ be the matrix such that $v_{n+1}=M_{n} v_{n}$.
- $\delta_{n}$ be the index of the smallest coordinate of $v_{n}$.
- $\theta_{n}=\left\langle v_{n}, e_{\delta_{n}}\right\rangle$. (the quantity that is subtracted to the two other coordinates of $v_{n}$ ).
- $T_{n}=M_{0}^{T} M_{1}^{T} \cdots M_{n-1}^{T} e_{\delta_{n}}$,
- $\theta_{n}=\left\langle v_{n}, e_{\delta_{n}}\right\rangle=\left\langle M_{n-1} \cdots M_{0} v, e_{\delta_{n}}\right\rangle=\langle v, \underbrace{M_{0}^{T} \cdots M_{n-1}^{T} e_{\delta_{n}}}_{T_{n}}\rangle$.
- $\sum_{n \geq 0} \theta_{n}=\frac{\|v\|_{1}}{2}$.
- For all finite $I \subset \mathbb{N}$, let $\mathcal{T}_{I}=\sum_{i \in I} T_{i}$, we have :

$$
0 \leq\left\langle v, \mathcal{T}_{I}\right\rangle<\frac{\|v\|_{1}}{2}, \quad \bullet \mathcal{T}_{I} \in \mathcal{P}\left(v, 0, \frac{\|v\|_{1}}{2}\right)
$$

## Construction guided by Fully Subtractive

Definition ([Berthé, Domenjoud, Jamet, P. 13])

- Let $P_{0}=\{(0,0,0)\}$,
- For all $n \geq 1$ let $P_{n}=P_{n-1} \cup\left(T_{n}+P_{n-1}\right)$

Theorem ([Domenjoud, P., Vuillon 14])
If $v \in \mathcal{K}$, then $P_{\infty}=\mathcal{P}\left(v, 0, \frac{\|v\|_{1}}{2}\right)$

## Construction guided by Fully Subtractive

Definition ([Berthé, Domenjoud, Jamet, P. 13])

- Let $P_{0}=\{(0,0,0)\}$,
- For all $n \geq 1$ let $P_{n}=P_{n-1} \cup\left(T_{n}+P_{n-1}\right)$

Theorem ([Domenjoud, P., Vuillon 14])
If $v \in \mathcal{K}$, then $P_{\infty}=\mathcal{P}\left(v, 0, \frac{\|v\|_{1}}{2}\right)$
Examples:

- $v=\left(\beta, 2 \beta+\beta^{2}, 1\right) \in \mathcal{K}$ où $\beta$ est la racine réelle de $x^{3}+2 x^{2}+2 x-1$.


## Construction guided by Fully Subtractive

Definition ([Berthé, Domenjoud, Jamet, P. 13])

- Let $P_{0}=\{(0,0,0)\}$,
- For all $n \geq 1$ let $P_{n}=P_{n-1} \cup\left(T_{n}+P_{n-1}\right)$

Theorem ([Domenjoud, P., Vuillon 14])
If $v \in \mathcal{K}$, then $P_{\infty}=\mathcal{P}\left(v, 0, \frac{\|v\|_{1}}{2}\right)$
Examples:

- $v=\left(\beta, 2 \beta+\beta^{2}, 1\right) \in \mathcal{K}$ où $\beta$ est la racine réelle de $x^{3}+2 x^{2}+2 x-1$. $T_{0}=(1,0,0)$


## Construction guided by Fully Subtractive

Definition ([Berthé, Domenjoud, Jamet, P. 13])

- Let $P_{0}=\{(0,0,0)\}$,
- For all $n \geq 1$ let $P_{n}=P_{n-1} \cup\left(T_{n}+P_{n-1}\right)$

Theorem ([Domenjoud, P., Vuillon 14])
If $v \in \mathcal{K}$, then $P_{\infty}=\mathcal{P}\left(v, 0, \frac{\|v\|_{1}}{2}\right)$
Examples:

- $v=\left(\beta, 2 \beta+\beta^{2}, 1\right) \in \mathcal{K}$ où $\beta$ est la racine réelle de $x^{3}+2 x^{2}+2 x-1$.
$T_{0}=(1,0,0)$
$T_{1}=(-1,1,0)$


## Construction guided by Fully Subtractive

Definition ([Berthé, Domenjoud, Jamet, P. 13])

- Let $P_{0}=\{(0,0,0)\}$,
- For all $n \geq 1$ let $P_{n}=P_{n-1} \cup\left(T_{n}+P_{n-1}\right)$

Theorem ([Domenjoud, P., Vuillon 14])
If $v \in \mathcal{K}$, then $P_{\infty}=\mathcal{P}\left(v, 0, \frac{\|v\|_{1}}{2}\right)$
Examples:

- $v=\left(\beta, 2 \beta+\beta^{2}, 1\right) \in \mathcal{K}$ où $\beta$ est la racine réelle de $x^{3}+2 x^{2}+2 x-1$.

$$
\begin{aligned}
& T_{0}=(1,0,0) \\
& T_{1}=(-1,1,0) \\
& T_{2}=(-1,1,0)
\end{aligned}
$$

## Construction guided by Fully Subtractive

Definition ([Berthé, Domenjoud, Jamet, P. 13])

- Let $P_{0}=\{(0,0,0)\}$,
- For all $n \geq 1$ let $P_{n}=P_{n-1} \cup\left(T_{n}+P_{n-1}\right)$

Theorem ([Domenjoud, P., Vuillon 14])
If $v \in \mathcal{K}$, then $P_{\infty}=\mathcal{P}\left(v, 0, \frac{\|v\|_{1}}{2}\right)$
Examples:

- $v=\left(\beta, 2 \beta+\beta^{2}, 1\right) \in \mathcal{K}$ où $\beta$ est la racine réelle de $x^{3}+2 x^{2}+2 x-1$.

$$
\begin{aligned}
& T_{0}=(1,0,0) \\
& T_{1}=(-1,1,0) \\
& T_{2}=(-1,1,0) \\
& T_{3}=(1,-2,1)
\end{aligned}
$$

## Construction guided by Fully Subtractive

Definition ([Berthé, Domenjoud, Jamet, P. 13])

- Let $P_{0}=\{(0,0,0)\}$,
- For all $n \geq 1$ let $P_{n}=P_{n-1} \cup\left(T_{n}+P_{n-1}\right)$

Theorem ([Domenjoud, P., Vuillon 14])
If $v \in \mathcal{K}$, then $P_{\infty}=\mathcal{P}\left(v, 0, \frac{\|v\|_{1}}{2}\right)$
Examples:

- $v=\left(\beta, 2 \beta+\beta^{2}, 1\right) \in \mathcal{K}$ où $\beta$ est la racine réelle de $x^{3}+2 x^{2}+2 x-1$.

$$
\begin{aligned}
& T_{0}=(1,0,0) \\
& T_{1}=(-1,1,0) \\
& T_{2}=(-1,1,0) \\
& T_{3}=(1,-2,1) \\
& T_{4}=(1,-2,1)
\end{aligned}
$$



## Construction guided by Fully Subtractive

Definition ([Berthé, Domenjoud, Jamet, P. 13])

- Let $P_{0}=\{(0,0,0)\}$,
- For all $n \geq 1$ let $P_{n}=P_{n-1} \cup\left(T_{n}+P_{n-1}\right)$

Theorem ([Domenjoud, P., Vuillon 14])
If $v \in \mathcal{K}$, then $P_{\infty}=\mathcal{P}\left(v, 0, \frac{\|v\|_{1}}{2}\right)$
Examples:

- $v=\left(\beta, 2 \beta+\beta^{2}, 1\right) \in \mathcal{K}$ où $\beta$ est la racine réelle de $x^{3}+2 x^{2}+2 x-1$.

$$
\begin{aligned}
& T_{0}=(1,0,0) \\
& T_{1}=(-1,1,0) \\
& T_{2}=(-1,1,0) \\
& T_{3}=(1,-2,1) \\
& T_{4}=(1,-2,1) \\
& T_{5}=(1,2,-2)
\end{aligned}
$$



## Construction guided by Fully Subtractive

Definition ([Berthé, Domenjoud, Jamet, P. 13])

- Let $P_{0}=\{(0,0,0)\}$,
- For all $n \geq 1$ let $P_{n}=P_{n-1} \cup\left(T_{n}+P_{n-1}\right)$

Theorem ([Domenjoud, P., Vuillon 14])
If $v \in \mathcal{K}$, then $P_{\infty}=\mathcal{P}\left(v, 0, \frac{\|v\|_{1}}{2}\right)$
Examples:

- $v=\left(\beta, 2 \beta+\beta^{2}, 1\right) \in \mathcal{K}$ où $\beta$ est la racine réelle de $x^{3}+2 x^{2}+2 x-1$.

$$
\begin{aligned}
& T_{0}=(1,0,0) \\
& T_{1}=(-1,1,0) \\
& T_{2}=(-1,1,0) \\
& T_{3}=(1,-2,1) \\
& T_{4}=(1,-2,1) \\
& T_{5}=(1,2,-2) \\
& T_{6}=(1,2,-2)
\end{aligned}
$$



## Construction guided by Fully Subtractive

Definition ([Berthé, Domenjoud, Jamet, P. 13])

- Let $P_{0}=\{(0,0,0)\}$,
- For all $n \geq 1$ let $P_{n}=P_{n-1} \cup\left(T_{n}+P_{n-1}\right)$

Theorem ([Domenjoud, P., Vuillon 14])
If $v \in \mathcal{K}$, then $P_{\infty}=\mathcal{P}\left(v, 0, \frac{\|v\|_{1}}{2}\right)$
Examples:

- $v=\left(\beta, 2 \beta+\beta^{2}, 1\right) \in \mathcal{K}$ où $\beta$ est la racine réelle de $x^{3}+2 x^{2}+2 x-1$.

$$
\begin{aligned}
& T_{0}=(1,0,0) \\
& T_{1}=(-1,1,0) \\
& T_{2}=(-1,1,0) \\
& T_{3}=(1,-2,1) \\
& T_{4}=(1,-2,1) \\
& T_{5}=(1,2,-2) \\
& T_{6}=(1,2,-2) \\
& T_{7}=(-5,1,2)
\end{aligned}
$$



## Construction guided by Fully Subtractive

Definition ([Berthé, Domenjoud, Jamet, P. 13])

- Let $P_{0}=\{(0,0,0)\}$,
- For all $n \geq 1$ let $P_{n}=P_{n-1} \cup\left(T_{n}+P_{n-1}\right)$

Theorem ([Domenjoud, P., Vuillon 14])
If $v \in \mathcal{K}$, then $P_{\infty}=\mathcal{P}\left(v, 0, \frac{\|v\|_{1}}{2}\right)$
Examples:

- $v=\left(\beta, 2 \beta+\beta^{2}, 1\right) \in \mathcal{K}$ où $\beta$ est la racine réelle de $x^{3}+2 x^{2}+2 x-1$.

$$
\begin{aligned}
& T_{0}=(1,0,0) \\
& T_{1}=(-1,1,0) \\
& T_{2}=(-1,1,0) \\
& T_{3}=(1,-2,1) \\
& T_{4}=(1,-2,1) \\
& T_{5}=(1,2,-2) \\
& T_{6}=(1,2,-2) \\
& T_{7}=(-5,1,2) \\
& T_{8}=(-5,1,2)
\end{aligned}
$$



## Construction guided by Fully Subtractive

Definition ([Berthé, Domenjoud, Jamet, P. 13])

- Let $P_{0}=\{(0,0,0)\}$,
- For all $n \geq 1$ let $P_{n}=P_{n-1} \cup\left(T_{n}+P_{n-1}\right)$

Theorem ([Domenjoud, P., Vuillon 14])
If $v \in \mathcal{K}$, then $P_{\infty}=\mathcal{P}\left(v, 0, \frac{\|v\|_{1}}{2}\right)$
Examples:

- $v=\left(\beta, 2 \beta+\beta^{2}, 1\right) \in \mathcal{K}$ où $\beta$ est la racine réelle de $x^{3}+2 x^{2}+2 x-1$.

$$
\begin{aligned}
& T_{0}=(1,0,0) \\
& T_{1}=(-1,1,0) \\
& T_{2}=(-1,1,0) \\
& T_{3}=(1,-2,1) \\
& T_{4}=(1,-2,1) \\
& T_{5}=(1,2,-2) \\
& T_{6}=(1,2,-2) \\
& T_{7}=(-5,1,2) \\
& T_{8}=(-5,1,2) \\
& T_{9}=(9,-8,1)
\end{aligned}
$$



## Tree structure

Theorem ([Domenjoud, Vuillon 12])
The adjacency graph of $P_{n}$ has a tree rooted in $\overrightarrow{0}$.

禺

## Reinterpretation of the Christoffel tree

How to draw the Christoffel word with normal vector $(3,8)$ ?


- Exclude the first and the last steps, we'll add them back at the end.
- At each step, replace one side by the whole pattern.


| Pattern | slope | Euclid algorithm |
| :---: | :---: | :---: |
| $8$ | $\frac{1}{1}$ | $(\underline{3}, 8)$ |
| $0-\infty$ | $\frac{1}{2}$ | $(\underline{3}, 5)$ |
| $0$ | $\frac{1}{3}$ | $(3, \underline{2})$ |
|  | $\frac{2}{5}$ | $(1,2)$ |
|  | $\frac{3}{8}$ | $(1,1)$ |

Unified view for patches of discrete planes

| Pattern | Normal <br> vector | Fully <br> subtractive <br> algorithm |  |
| :---: | :---: | :---: | :---: |
|  | 0 | $(1,1,1)$ | $(\underline{6}, 8,11)$ |

From pattern to digital plane planes
$(6,8,11)$


From pattern to digital plane
$(6,8,11)$


From pattern to digital plane
$(6,8,11)$


From pattern to digital plane


Mission accomplished ?

Mission accomplished ?

- No !

Mission accomplished ?

- No!


Construction deals only with:

- vectors of $\mathcal{K}$,
- integer vectors such that FS reaches (1, 1, 1).
$\{(x / z, y / z) \mid x \leq y \leq z$ and our construction deals with $(x, y, z)\}$


# Merci pour votre attention 

## Fin

