
Recursive structure of digital lines and planes in the context of
image analysis

Xavier Provençal
Laboratoire de Mathématiques
Université de Savoie

Journées Montoires
September 25, 2014, Nancy

Outline

1 Image analysis

(Why do we care)

2 Recursive structure of digital lines

(Everything is just great in 2D)

3 Recursive structure of digital planes

(How about 3D ?)

2 / 35

Outline

1 Image analysis (Why do we care)

2 Recursive structure of digital lines (Everything is just great in 2D)

3 Recursive structure of digital planes (How about 3D ?)

2 / 35

Shape
analysis

DSS on the
boundary

Part I

Image analysis

1 Shape analysis

2 DSS on the boundary of digital shapes

3 / 35

Shape
analysis

DSS on the
boundary

Image analysis

Definition (Wikipedia)
Image analysis is the extraction of meaningful information from
images; mainly from digital images by means of digital image
processing techniques.

Object recognition

Segmentation

3D reconstruction

Motion detection/tracking

Medical imaging

Optical character recognition

4 / 35

Shape
analysis

DSS on the
boundary

Image analysis

Definition (Wikipedia)
Image analysis is the extraction of meaningful information from
images; mainly from digital images by means of digital image
processing techniques.

Object recognition

Segmentation

3D reconstruction

Motion detection/tracking

Medical imaging

Optical character recognition

4 / 35

Shape
analysis

DSS on the
boundary

Digitalization

Digitization : Dig(P) = P ∩ Zd .

Given Dig(P), what can we say about P ?

• Convexity ?
• Area ?
• Perimeter ?
• Curvature ?
• . . .

5 / 35

Shape
analysis

DSS on the
boundary

Digitalization

Digitization : Dig(P) = P ∩ Zd .

Given Dig(P), what can we say about P ?

• Convexity ?
• Area ?
• Perimeter ?
• Curvature ?
• . . .

5 / 35

Shape
analysis

DSS on the
boundary

Digitalization

Digitization : Dig(P) = P ∩ Zd .

Given Dig(P), what can we say about P ?

• Convexity ?
• Area ?
• Perimeter ?
• Curvature ?
• . . .

5 / 35

Shape
analysis

DSS on the
boundary

Digitalization

Digitization : Dig(P) = P ∩ Zd .

Given Dig(P), what can we say about P ?

• Convexity ?
• Area ?
• Perimeter ?
• Curvature ?
• . . .

5 / 35

Shape
analysis

DSS on the
boundary

Digitalization

Digitization : Dig(P) = P ∩ Zd .

Given Dig(P), what can we say about P ?

• Convexity ?
• Area ?
• Perimeter ?
• Curvature ?
• . . .

5 / 35

Shape
analysis

DSS on the
boundary

Digitalization

Digitization : Dig(P) = P ∩ Zd .

Given Dig(P), what can we say about P ?

• Convexity ?
• Area ?
• Perimeter ?
• Curvature ?
• . . .

5 / 35

Shape
analysis

DSS on the
boundary

Digital convexity

Definition
A digital set D ⊂ Z d is digitally convex if

• Dig(Conv(D)) = D.

Definitions and characterizations :

• [Minsky and Papert 1969]
• [Sklansky 1970]
• [Kim, Rosenfeld 1981]
• [Hübler, Klette, Voss 1981]

• [Chassery 1983]

• . . .

• [Brlek, Lachaud, P., Reutenauer 2009]

6 / 35

Shape
analysis

DSS on the
boundary

DSS on the boundary of a shape

Definition
A Digital Straight Segment (DSS) is, equivalently :

• Finite and connected part of a Digital Straight Line.
• A finite factor of a Sturmian word.
• A finite 1-balanced word.

0 0 0 0 0 0
30 0

30 0
30

30
3

3

3
23

23
2223

22222
12222

12
12

1

1

1

1
01

01
0 01

2 0

3

1

7 / 35

Shape
analysis

DSS on the
boundary

Tangential cover

Definition ([Feschet, Tougne 99])
The tangential cover of a discrete
shape is the sequence of all maximal
DSS on its boundary.

Theorem ([Debled-Rennesson, Reveilles 1995][Lachaud, Vialard, de Vieilleville
2007])
The computation of the tangential cover take a time in O(n) where n is the
number of points on the boundary of the shape.

Applications of the tangential cover include :
• Convexity test

[Debled-Rennesson, Reiter-Doerksen
04]

• Tangent estimation
[Feschet, Tougne 99], [Lachaud, de
Vieilleville 07]

• Length estimation
[Lachaud, de Vieilleville 07]

• Curvature estimation
[Lachaud, Kerautret, Naegel 08]

• Automatic noise detection
[Lachaud, Kerautret 12]

8 / 35

Christoffel
words

Digital
convexity

Algorithms

Part II

Recursive structure of digital lines

3 Christoffel words

4 Digital convexity

5 Algorithms

9 / 35

Christoffel
words

Digital
convexity

Algorithms

Christoffel words

Definition ([Christoffel 1875])
A Christoffel word codes digital path right below a segments between two
consecutive integer points

w = 00100100101 is the Christoffel word of slope 4/7.

Theorem ([Borel, Laubie 93])
Any Christoffel word, other than 0 and 1, can be written in a unique way as
a product of two Christoffel words.

This is called the standard factorization, noted w = (u, v).

10 / 35

Christoffel
words

Digital
convexity

Algorithms

Christoffel words

Definition ([Christoffel 1875])
A Christoffel word codes digital path right below a segments between two
consecutive integer points

4/7

w = 00100100101 is the Christoffel word of slope 4/7.

Theorem ([Borel, Laubie 93])
Any Christoffel word, other than 0 and 1, can be written in a unique way as
a product of two Christoffel words.

This is called the standard factorization, noted w = (u, v).

10 / 35

Christoffel
words

Digital
convexity

Algorithms

Christoffel words

Definition ([Christoffel 1875])
A Christoffel word codes digital path right below a segments between two
consecutive integer points

4/7

0 0

1
0 0

1
0 0

1
0

1

w = 00100100101 is the Christoffel word of slope 4/7.

Theorem ([Borel, Laubie 93])
Any Christoffel word, other than 0 and 1, can be written in a unique way as
a product of two Christoffel words.

This is called the standard factorization, noted w = (u, v).

10 / 35

Christoffel
words

Digital
convexity

Algorithms

Christoffel words

Definition ([Christoffel 1875])
A Christoffel word codes digital path right below a segments between two
consecutive integer points

4/7

0 0

1
0 0

1
0 0

1
0

1

w = 00100100101 is the Christoffel word of slope 4/7.

Theorem ([Borel, Laubie 93])
Any Christoffel word, other than 0 and 1, can be written in a unique way as
a product of two Christoffel words.

This is called the standard factorization, noted w = (u, v).

10 / 35

Christoffel
words

Digital
convexity

Algorithms

Christoffel words

Definition ([Christoffel 1875])
A Christoffel word codes digital path right below a segments between two
consecutive integer points

4/7

0 0

1
0 0

1
0 0

1
0

1

1/2

3/5

w = 001 · 00100101 is the Christoffel word of slope 4/7.

Theorem ([Borel, Laubie 93])
Any Christoffel word, other than 0 and 1, can be written in a unique way as
a product of two Christoffel words.

This is called the standard factorization, noted w = (u, v).
10 / 35

Christoffel
words

Digital
convexity

Algorithms

Christoffel Tree

If (u, v) is a standard factorization, then (u, uv) and (uv , v) are standard
factorizations of Christoffel words.

The Christoffel Tree is the tree obtained, starting from (0, 1), using
the rule : (u, v)

(u, uv) (uv , v)

Theorem
Every Christoffel word appears exactly once in the Christoffel Tree.

(0, 1)

(0, 01) (01, 1)

(0, 001) (001, 01) (01, 011) (011, 1)

(0, 0001) (0001, 001) (001, 00101) (00101, 01) (01, 01011) (01011, 011) (011, 0111) (0111, 1)

11 / 35

Christoffel
words

Digital
convexity

Algorithms

Christoffel Tree

If (u, v) is a standard factorization, then (u, uv) and (uv , v) are standard
factorizations of Christoffel words.

The Christoffel Tree is the tree obtained, starting from (0, 1), using
the rule : (u, v)

(u, uv) (uv , v)

Theorem
Every Christoffel word appears exactly once in the Christoffel Tree.

(0, 1)

(0, 01) (01, 1)

(0, 001) (001, 01) (01, 011) (011, 1)

(0, 0001) (0001, 001) (001, 00101) (00101, 01) (01, 01011) (01011, 011) (011, 0111) (0111, 1)

11 / 35

Christoffel
words

Digital
convexity

Algorithms

Christoffel Tree

If (u, v) is a standard factorization, then (u, uv) and (uv , v) are standard
factorizations of Christoffel words.

The Christoffel Tree is the tree obtained, starting from (0, 1), using
the rule : (u, v)

(u, uv) (uv , v)

Theorem
Every Christoffel word appears exactly once in the Christoffel Tree.

(0, 1)

(0, 01) (01, 1)

(0, 001) (001, 01) (01, 011) (011, 1)

(0, 0001) (0001, 001) (001, 00101) (00101, 01) (01, 01011) (01011, 011) (011, 0111) (0111, 1)

11 / 35

Christoffel
words

Digital
convexity

Algorithms

Stern-Brocot Tree

Christoffel tree

(0, 1)

(0, 01) (01, 1)

(0, 001) (001, 01) (01, 011) (011, 1)

(· · ·)(· · ·)(· · ·)(· · ·)(· · ·)(· · ·)(· · ·)(· · ·)

0 1

Stern-Brocot tree.

0
1

1
0

1
1

1
2

2
1

1
3

2
3

3
2

3
1

1
4

2
5

3
5

3
4

4
3

5
3

5
2

4
1

Every irreducible fraction appears exactly once in the Stern-Brocot tree.

12 / 35

Christoffel
words

Digital
convexity

Algorithms

Stern-Brocot Tree

Christoffel tree

(0, 1)

(0, 01) (01, 1)

(0, 001) (001, 01) (01, 011) (011, 1)

(· · ·)(· · ·)(· · ·)(· · ·)(· · ·)(· · ·)(· · ·)(· · ·)

0 1

Stern-Brocot tree.

0
1

1
0

1
1

1
2

2
1

1
3

2
3

3
2

3
1

1
4

2
5

3
5

3
4

4
3

5
3

5
2

4
1

Every irreducible fraction appears exactly once in the Stern-Brocot tree.

12 / 35

Christoffel
words

Digital
convexity

Algorithms

Stern-Brocot Tree

Christoffel tree

(0, 1)

(0, 01) (01, 1)

(0, 001) (001, 01) (01, 011) (011, 1)

(· · ·)(· · ·)(· · ·)(· · ·)(· · ·)(· · ·)(· · ·)(· · ·)

0 1

Stern-Brocot tree.

0
1

1
0

1
1

1
2

2
1

1
3

2
3

3
2

3
1

1
4

2
5

3
5

3
4

4
3

5
3

5
2

4
1

Every irreducible fraction appears exactly once in the Stern-Brocot tree.

12 / 35

Christoffel
words

Digital
convexity

Algorithms

Recursive formula

Theorem ([Berstel 92])
The Christoffel word cn of slope [z0; z1, . . . , zn] is given recursively by :

cn =

{ c2m−2cz2m
2m−1 if n = 2m,

cz2m+1
2m c2m−1 if n = 2m + 1.

where c−1 = 1, and c−2 = 0,

Example : 3/4 = [0; 1, 3],

c−2 = 0,

c−1 = 1,

c0 = c−2 · c0
−1 = 0 · (1)0 = 0,

c1 = c1
0 · c−1 =(0)1 · 1 = 01,

c2 = c0 · c3
1 = 0 · (01)3 = 0010101,

c−2 :

c−1 :

c0 : · ()0 =

c1 : ()1 · =

c2 : · ()3 =

13 / 35

Christoffel
words

Digital
convexity

Algorithms

Nested prefixes

Corollary
A Christoffel word that admits w = (u, v) as a proper prefix, has a
prefix of the form : w k v = (w ,w k−1v).

Identifying the longest prefix that is a Christoffel word :

p1
p0

Corollary
A Christoffel word w = (u, v) has a prefix p0 such that v = p1.

14 / 35

Christoffel
words

Digital
convexity

Algorithms

Nested prefixes

Corollary
A Christoffel word that admits w = (u, v) as a proper prefix, has a
prefix of the form : w k v = (w ,w k−1v).

Identifying the longest prefix that is a Christoffel word :

w
u v

p1
p0

Corollary
A Christoffel word w = (u, v) has a prefix p0 such that v = p1.

14 / 35

Christoffel
words

Digital
convexity

Algorithms

Nested prefixes

Corollary
A Christoffel word that admits w = (u, v) as a proper prefix, has a
prefix of the form : w k v = (w ,w k−1v).

Identifying the longest prefix that is a Christoffel word :

w
u v

?

?

p1
p0

Corollary
A Christoffel word w = (u, v) has a prefix p0 such that v = p1.

14 / 35

Christoffel
words

Digital
convexity

Algorithms

Nested prefixes

Corollary
A Christoffel word that admits w = (u, v) as a proper prefix, has a
prefix of the form : w k v = (w ,w k−1v).

Identifying the longest prefix that is a Christoffel word :

w
u v

w vw ′

p1
p0

Corollary
A Christoffel word w = (u, v) has a prefix p0 such that v = p1.

14 / 35

Christoffel
words

Digital
convexity

Algorithms

Nested prefixes

Corollary
A Christoffel word that admits w = (u, v) as a proper prefix, has a
prefix of the form : w k v = (w ,w k−1v).

Identifying the longest prefix that is a Christoffel word :

w
u v

w vw ′
u′ v ′

p1
p0

Corollary
A Christoffel word w = (u, v) has a prefix p0 such that v = p1.

14 / 35

Christoffel
words

Digital
convexity

Algorithms

Nested prefixes

Corollary
A Christoffel word that admits w = (u, v) as a proper prefix, has a
prefix of the form : w k v = (w ,w k−1v).

Identifying the longest prefix that is a Christoffel word :

w
u v

w vw ′
u′ v ′

p1
p0

Corollary
A Christoffel word w = (u, v) has a prefix p0 such that v = p1.

14 / 35

Christoffel
words

Digital
convexity

Algorithms

Lexicographic order

Property
Lexicographic order on Christoffel words correspond to the order on
the slope

w
5/7

15 / 35

Christoffel
words

Digital
convexity

Algorithms

Lexicographic order

Property
Lexicographic order on Christoffel words correspond to the order on
the slope

w
5/7

2/3

15 / 35

Christoffel
words

Digital
convexity

Algorithms

Lexicographic order

Property
Lexicographic order on Christoffel words correspond to the order on
the slope

w
5/7

w ′
7/9

15 / 35

Christoffel
words

Digital
convexity

Algorithms

Lexicographic order

Property
Lexicographic order on Christoffel words correspond to the order on
the slope

w
5/7

w ′
7/9

15 / 35

Christoffel
words

Digital
convexity

Algorithms

Lyndon words

Definition ([Lyndon 54])
A w is a Lyndon word iff for every proper suffix s of w ,

w <Lex s

Examples :
1 aabab is Lyndon since aabab <Lex {abab, bab, ab, b},
2 aabaab is not Lyndon, let aab <Lex w .

Theorem ([Chen, Fox, Lyndon 58])
Every word has a unique factorization as non-increasing Lyndon words

Example :
1 1 0 1 1 0 1 1 0 0 1 0 0 1 1 0 0 0

= 1 · 1 · 0 1 1 · 0 1 1 · 0 0 1 0 0 1 1 · 0 · 0 · 0
= (1)2 · (0 1 1)2 · (0 0 1 0 0 1 1)1 · (0)3.

16 / 35

Christoffel
words

Digital
convexity

Algorithms

Lyndon words

Definition ([Lyndon 54])
A w is a Lyndon word iff for every proper suffix s of w ,

w <Lex s

Examples :
1 aabab is Lyndon since aabab <Lex {abab, bab, ab, b},
2 aabaab is not Lyndon, let aab <Lex w .

Theorem ([Chen, Fox, Lyndon 58])
Every word has a unique factorization as non-increasing Lyndon words

Example :
1 1 0 1 1 0 1 1 0 0 1 0 0 1 1 0 0 0

= 1 · 1 · 0 1 1 · 0 1 1 · 0 0 1 0 0 1 1 · 0 · 0 · 0
= (1)2 · (0 1 1)2 · (0 0 1 0 0 1 1)1 · (0)3.

16 / 35

Christoffel
words

Digital
convexity

Algorithms

Combinatorial view of convexity

Theorem ([Brlek, Lachaud, P., Reutenauer 09])
The north-west part of a digital shape is convex iff its Lyndon
factorization contains only Christoffel words.

Sketch of the proof :
• Uniqueness of the Lyndon factorization.
• No integer points between a Christoffel word and its convex hull.

110110111010100010010000100010000
=(1)2 · 0110111 · (01)2 · 001001 · 000010001 · (0)4

17 / 35

Christoffel
words

Digital
convexity

Algorithms

Combinatorial view of convexity

Theorem ([Brlek, Lachaud, P., Reutenauer 09])
The north-west part of a digital shape is convex iff its Lyndon
factorization contains only Christoffel words.

Sketch of the proof :
• Uniqueness of the Lyndon factorization.
• No integer points between a Christoffel word and its convex hull.

110110111010100010010000100010000
=(1)2 · 0110111 · (01)2 · 001001 · 000010001 · (0)4

17 / 35

Christoffel
words

Digital
convexity

Algorithms

Duval algorithm
Recursive computation of the First Lyndon Prefix (FLF),

w =

1 Let l0 be a Lyndon prefix and k be it’s number of repetitions.
2 Identify at the first letter that is not that same than in l0.
3 If its smaller than l0 is FLF,

otherwise, lk
0 pb is a Lyndon word.

18 / 35

Christoffel
words

Digital
convexity

Algorithms

Duval algorithm
Recursive computation of the First Lyndon Prefix (FLF),

w = l0 l0 l0

1 Let l0 be a Lyndon prefix and k be it’s number of repetitions.

2 Identify at the first letter that is not that same than in l0.
3 If its smaller than l0 is FLF,

otherwise, lk
0 pb is a Lyndon word.

18 / 35

Christoffel
words

Digital
convexity

Algorithms

Duval algorithm
Recursive computation of the First Lyndon Prefix (FLF),

w = l0 l0 l0
p a p b

1 Let l0 be a Lyndon prefix and k be it’s number of repetitions.
2 Identify at the first letter that is not that same than in l0.

3 If its smaller than l0 is FLF,

otherwise, lk
0 pb is a Lyndon word.

18 / 35

Christoffel
words

Digital
convexity

Algorithms

Duval algorithm
Recursive computation of the First Lyndon Prefix (FLF),

w = l0 l0 l0
p a p b

a > b =⇒ Lyndon fact. starts by lk
0

1 Let l0 be a Lyndon prefix and k be it’s number of repetitions.
2 Identify at the first letter that is not that same than in l0.
3 If its smaller than l0 is FLF,

otherwise, lk
0 pb is a Lyndon word.

18 / 35

Christoffel
words

Digital
convexity

Algorithms

Duval algorithm
Recursive computation of the First Lyndon Prefix (FLF),

w = l0 l0 l0
p a p b

a > b =⇒ Lyndon fact. starts by lk
0

l ′0

b > a =⇒ lk
0 pb is a Lyndon prefix

1 Let l0 be a Lyndon prefix and k be it’s number of repetitions.
2 Identify at the first letter that is not that same than in l0.
3 If its smaller than l0 is FLF, otherwise, lk

0 pb is a Lyndon word.

18 / 35

Christoffel
words

Digital
convexity

Algorithms

Duval algorithm
Recursive computation of the First Lyndon Prefix (FLF),

w = l0 l0 l0
p a p b

a > b =⇒ Lyndon fact. starts by lk
0

l ′0

b > a =⇒ lk
0 pb is a Lyndon prefix

0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1
l0

1 Let l0 be a Lyndon prefix and k be it’s number of repetitions.
2 Identify at the first letter that is not that same than in l0.
3 If its smaller than l0 is FLF, otherwise, lk

0 pb is a Lyndon word.

18 / 35

Christoffel
words

Digital
convexity

Algorithms

Duval algorithm
Recursive computation of the First Lyndon Prefix (FLF),

w = l0 l0 l0
p a p b

a > b =⇒ Lyndon fact. starts by lk
0

l ′0

b > a =⇒ lk
0 pb is a Lyndon prefix

0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1
l0

1 Let l0 be a Lyndon prefix and k be it’s number of repetitions.
2 Identify at the first letter that is not that same than in l0.
3 If its smaller than l0 is FLF, otherwise, lk

0 pb is a Lyndon word.

18 / 35

Christoffel
words

Digital
convexity

Algorithms

Duval algorithm
Recursive computation of the First Lyndon Prefix (FLF),

w = l0 l0 l0
p a p b

a > b =⇒ Lyndon fact. starts by lk
0

l ′0

b > a =⇒ lk
0 pb is a Lyndon prefix

0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1
l0 l0

1 Let l0 be a Lyndon prefix and k be it’s number of repetitions.
2 Identify at the first letter that is not that same than in l0.
3 If its smaller than l0 is FLF, otherwise, lk

0 pb is a Lyndon word.

18 / 35

Christoffel
words

Digital
convexity

Algorithms

Duval algorithm
Recursive computation of the First Lyndon Prefix (FLF),

w = l0 l0 l0
p a p b

a > b =⇒ Lyndon fact. starts by lk
0

l ′0

b > a =⇒ lk
0 pb is a Lyndon prefix

0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1
l0

1 Let l0 be a Lyndon prefix and k be it’s number of repetitions.
2 Identify at the first letter that is not that same than in l0.
3 If its smaller than l0 is FLF, otherwise, lk

0 pb is a Lyndon word.

18 / 35

Christoffel
words

Digital
convexity

Algorithms

Duval algorithm
Recursive computation of the First Lyndon Prefix (FLF),

w = l0 l0 l0
p a p b

a > b =⇒ Lyndon fact. starts by lk
0

l ′0

b > a =⇒ lk
0 pb is a Lyndon prefix

0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1
l0

1 Let l0 be a Lyndon prefix and k be it’s number of repetitions.
2 Identify at the first letter that is not that same than in l0.
3 If its smaller than l0 is FLF, otherwise, lk

0 pb is a Lyndon word.

18 / 35

Christoffel
words

Digital
convexity

Algorithms

Duval algorithm
Recursive computation of the First Lyndon Prefix (FLF),

w = l0 l0 l0
p a p b

a > b =⇒ Lyndon fact. starts by lk
0

l ′0

b > a =⇒ lk
0 pb is a Lyndon prefix

0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1
l0

1 Let l0 be a Lyndon prefix and k be it’s number of repetitions.
2 Identify at the first letter that is not that same than in l0.
3 If its smaller than l0 is FLF, otherwise, lk

0 pb is a Lyndon word.

18 / 35

Christoffel
words

Digital
convexity

Algorithms

Duval algorithm
Recursive computation of the First Lyndon Prefix (FLF),

w = l0 l0 l0
p a p b

a > b =⇒ Lyndon fact. starts by lk
0

l ′0

b > a =⇒ lk
0 pb is a Lyndon prefix

0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1
l0 l0

1 Let l0 be a Lyndon prefix and k be it’s number of repetitions.
2 Identify at the first letter that is not that same than in l0.
3 If its smaller than l0 is FLF, otherwise, lk

0 pb is a Lyndon word.

18 / 35

Christoffel
words

Digital
convexity

Algorithms

Duval algorithm
Recursive computation of the First Lyndon Prefix (FLF),

w = l0 l0 l0
p a p b

a > b =⇒ Lyndon fact. starts by lk
0

l ′0

b > a =⇒ lk
0 pb is a Lyndon prefix

0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1
l0 l0

1 Let l0 be a Lyndon prefix and k be it’s number of repetitions.
2 Identify at the first letter that is not that same than in l0.
3 If its smaller than l0 is FLF, otherwise, lk

0 pb is a Lyndon word.

18 / 35

Christoffel
words

Digital
convexity

Algorithms

Duval algorithm
Recursive computation of the First Lyndon Prefix (FLF),

w = l0 l0 l0
p a p b

a > b =⇒ Lyndon fact. starts by lk
0

l ′0

b > a =⇒ lk
0 pb is a Lyndon prefix

0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1
l0

1 Let l0 be a Lyndon prefix and k be it’s number of repetitions.
2 Identify at the first letter that is not that same than in l0.
3 If its smaller than l0 is FLF, otherwise, lk

0 pb is a Lyndon word.

18 / 35

Christoffel
words

Digital
convexity

Algorithms

Duval algorithm
Recursive computation of the First Lyndon Prefix (FLF),

w = l0 l0 l0
p a p b

a > b =⇒ Lyndon fact. starts by lk
0

l ′0

b > a =⇒ lk
0 pb is a Lyndon prefix

0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1
l0

1 Let l0 be a Lyndon prefix and k be it’s number of repetitions.
2 Identify at the first letter that is not that same than in l0.
3 If its smaller than l0 is FLF, otherwise, lk

0 pb is a Lyndon word.

18 / 35

Christoffel
words

Digital
convexity

Algorithms

Duval algorithm
Recursive computation of the First Lyndon Prefix (FLF),

w = l0 l0 l0
p a p b

a > b =⇒ Lyndon fact. starts by lk
0

l ′0

b > a =⇒ lk
0 pb is a Lyndon prefix

0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1
l0

1 Let l0 be a Lyndon prefix and k be it’s number of repetitions.
2 Identify at the first letter that is not that same than in l0.
3 If its smaller than l0 is FLF, otherwise, lk

0 pb is a Lyndon word.

18 / 35

Christoffel
words

Digital
convexity

Algorithms

Duval algorithm
Recursive computation of the First Lyndon Prefix (FLF),

w = l0 l0 l0
p a p b

a > b =⇒ Lyndon fact. starts by lk
0

l ′0

b > a =⇒ lk
0 pb is a Lyndon prefix

0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1
l0

1 Let l0 be a Lyndon prefix and k be it’s number of repetitions.
2 Identify at the first letter that is not that same than in l0.
3 If its smaller than l0 is FLF, otherwise, lk

0 pb is a Lyndon word.

18 / 35

Christoffel
words

Digital
convexity

Algorithms

Duval algorithm
Recursive computation of the First Lyndon Prefix (FLF),

w = l0 l0 l0
p a p b

a > b =⇒ Lyndon fact. starts by lk
0

l ′0

b > a =⇒ lk
0 pb is a Lyndon prefix

0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1
l0

1 Let l0 be a Lyndon prefix and k be it’s number of repetitions.
2 Identify at the first letter that is not that same than in l0.
3 If its smaller than l0 is FLF, otherwise, lk

0 pb is a Lyndon word.

18 / 35

Christoffel
words

Digital
convexity

Algorithms

Duval algorithm
Recursive computation of the First Lyndon Prefix (FLF),

w = l0 l0 l0
p a p b

a > b =⇒ Lyndon fact. starts by lk
0

l ′0

b > a =⇒ lk
0 pb is a Lyndon prefix

0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1
l0

1 Let l0 be a Lyndon prefix and k be it’s number of repetitions.
2 Identify at the first letter that is not that same than in l0.
3 If its smaller than l0 is FLF, otherwise, lk

0 pb is a Lyndon word.

18 / 35

Christoffel
words

Digital
convexity

Algorithms

Duval algorithm
Recursive computation of the First Lyndon Prefix (FLF),

w = l0 l0 l0
p a p b

a > b =⇒ Lyndon fact. starts by lk
0

l ′0

b > a =⇒ lk
0 pb is a Lyndon prefix

0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1
l0

1 Let l0 be a Lyndon prefix and k be it’s number of repetitions.
2 Identify at the first letter that is not that same than in l0.
3 If its smaller than l0 is FLF, otherwise, lk

0 pb is a Lyndon word.

18 / 35

Christoffel
words

Digital
convexity

Algorithms

Duval algorithm
Recursive computation of the First Lyndon Prefix (FLF),

w = l0 l0 l0
p a p b

a > b =⇒ Lyndon fact. starts by lk
0

l ′0

b > a =⇒ lk
0 pb is a Lyndon prefix

0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1
l0

1 Let l0 be a Lyndon prefix and k be it’s number of repetitions.
2 Identify at the first letter that is not that same than in l0.
3 If its smaller than l0 is FLF, otherwise, lk

0 pb is a Lyndon word.

18 / 35

Christoffel
words

Digital
convexity

Algorithms

Duval algorithm
Recursive computation of the First Lyndon Prefix (FLF),

w = l0 l0 l0
p a p b

a > b =⇒ Lyndon fact. starts by lk
0

l ′0

b > a =⇒ lk
0 pb is a Lyndon prefix

0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1
l0 l1

1 Let l0 be a Lyndon prefix and k be it’s number of repetitions.
2 Identify at the first letter that is not that same than in l0.
3 If its smaller than l0 is FLF, otherwise, lk

0 pb is a Lyndon word.

18 / 35

Christoffel
words

Digital
convexity

Algorithms

Duval algorithm
Recursive computation of the First Lyndon Prefix (FLF),

w = l0 l0 l0
p a p b

a > b =⇒ Lyndon fact. starts by lk
0

l ′0

b > a =⇒ lk
0 pb is a Lyndon prefix

0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1
l0 l1 l1

1 Let l0 be a Lyndon prefix and k be it’s number of repetitions.
2 Identify at the first letter that is not that same than in l0.
3 If its smaller than l0 is FLF, otherwise, lk

0 pb is a Lyndon word.

18 / 35

Christoffel
words

Digital
convexity

Algorithms

Duval algorithm
Recursive computation of the First Lyndon Prefix (FLF),

w = l0 l0 l0
p a p b

a > b =⇒ Lyndon fact. starts by lk
0

l ′0

b > a =⇒ lk
0 pb is a Lyndon prefix

0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1
l0 l1

1 Let l0 be a Lyndon prefix and k be it’s number of repetitions.
2 Identify at the first letter that is not that same than in l0.
3 If its smaller than l0 is FLF, otherwise, lk

0 pb is a Lyndon word.

18 / 35

Christoffel
words

Digital
convexity

Algorithms

Duval algorithm
Recursive computation of the First Lyndon Prefix (FLF),

w = l0 l0 l0
p a p b

a > b =⇒ Lyndon fact. starts by lk
0

l ′0

b > a =⇒ lk
0 pb is a Lyndon prefix

0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1
l0 l1

1 Let l0 be a Lyndon prefix and k be it’s number of repetitions.
2 Identify at the first letter that is not that same than in l0.
3 If its smaller than l0 is FLF, otherwise, lk

0 pb is a Lyndon word.

18 / 35

Christoffel
words

Digital
convexity

Algorithms

Duval algorithm
Recursive computation of the First Lyndon Prefix (FLF),

w = l0 l0 l0
p a p b

a > b =⇒ Lyndon fact. starts by lk
0

l ′0

b > a =⇒ lk
0 pb is a Lyndon prefix

0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1
l0 l1

1 Let l0 be a Lyndon prefix and k be it’s number of repetitions.
2 Identify at the first letter that is not that same than in l0.
3 If its smaller than l0 is FLF, otherwise, lk

0 pb is a Lyndon word.

18 / 35

Christoffel
words

Digital
convexity

Algorithms

Duval algorithm
Recursive computation of the First Lyndon Prefix (FLF),

w = l0 l0 l0
p a p b

a > b =⇒ Lyndon fact. starts by lk
0

l ′0

b > a =⇒ lk
0 pb is a Lyndon prefix

0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1
l0 l1 l1

1 Let l0 be a Lyndon prefix and k be it’s number of repetitions.
2 Identify at the first letter that is not that same than in l0.
3 If its smaller than l0 is FLF, otherwise, lk

0 pb is a Lyndon word.

18 / 35

Christoffel
words

Digital
convexity

Algorithms

Duval algorithm
Recursive computation of the First Lyndon Prefix (FLF),

w = l0 l0 l0
p a p b

a > b =⇒ Lyndon fact. starts by lk
0

l ′0

b > a =⇒ lk
0 pb is a Lyndon prefix

0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1
l0 l1 l1

1 Let l0 be a Lyndon prefix and k be it’s number of repetitions.
2 Identify at the first letter that is not that same than in l0.
3 If its smaller than l0 is FLF, otherwise, lk

0 pb is a Lyndon word.

18 / 35

Christoffel
words

Digital
convexity

Algorithms

Duval algorithm
Recursive computation of the First Lyndon Prefix (FLF),

w = l0 l0 l0
p a p b

a > b =⇒ Lyndon fact. starts by lk
0

l ′0

b > a =⇒ lk
0 pb is a Lyndon prefix

0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1
l0 l1 l1

1 Let l0 be a Lyndon prefix and k be it’s number of repetitions.
2 Identify at the first letter that is not that same than in l0.
3 If its smaller than l0 is FLF, otherwise, lk

0 pb is a Lyndon word.

18 / 35

Christoffel
words

Digital
convexity

Algorithms

Duval algorithm
Recursive computation of the First Lyndon Prefix (FLF),

w = l0 l0 l0
p a p b

a > b =⇒ Lyndon fact. starts by lk
0

l ′0

b > a =⇒ lk
0 pb is a Lyndon prefix

0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1
l0 l1 l1 l2

1 Let l0 be a Lyndon prefix and k be it’s number of repetitions.
2 Identify at the first letter that is not that same than in l0.
3 If its smaller than l0 is FLF, otherwise, lk

0 pb is a Lyndon word.

18 / 35

Christoffel
words

Digital
convexity

Algorithms

Duval algorithm
Recursive computation of the First Lyndon Prefix (FLF),

w = l0 l0 l0
p a p b

a > b =⇒ Lyndon fact. starts by lk
0

l ′0

b > a =⇒ lk
0 pb is a Lyndon prefix

0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1
l0 l1 l1 l2 l2

1 Let l0 be a Lyndon prefix and k be it’s number of repetitions.
2 Identify at the first letter that is not that same than in l0.
3 If its smaller than l0 is FLF, otherwise, lk

0 pb is a Lyndon word.

18 / 35

Christoffel
words

Digital
convexity

Algorithms

Duval algorithm
Recursive computation of the First Lyndon Prefix (FLF),

w = l0 l0 l0
p a p b

a > b =⇒ Lyndon fact. starts by lk
0

l ′0

b > a =⇒ lk
0 pb is a Lyndon prefix

0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1
l0 l1 l1 l2 l2 l2

1 Let l0 be a Lyndon prefix and k be it’s number of repetitions.
2 Identify at the first letter that is not that same than in l0.
3 If its smaller than l0 is FLF, otherwise, lk

0 pb is a Lyndon word.

18 / 35

Christoffel
words

Digital
convexity

Algorithms

Duval algorithm
Recursive computation of the First Lyndon Prefix (FLF),

w = l0 l0 l0
p a p b

a > b =⇒ Lyndon fact. starts by lk
0

l ′0

b > a =⇒ lk
0 pb is a Lyndon prefix

0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1
l0 l1 l1 l2

1 Let l0 be a Lyndon prefix and k be it’s number of repetitions.
2 Identify at the first letter that is not that same than in l0.
3 If its smaller than l0 is FLF, otherwise, lk

0 pb is a Lyndon word.

18 / 35

Christoffel
words

Digital
convexity

Algorithms

Duval algorithm
Recursive computation of the First Lyndon Prefix (FLF),

w = l0 l0 l0
p a p b

a > b =⇒ Lyndon fact. starts by lk
0

l ′0

b > a =⇒ lk
0 pb is a Lyndon prefix

0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1
l0 l1 l1 l2

1 Let l0 be a Lyndon prefix and k be it’s number of repetitions.
2 Identify at the first letter that is not that same than in l0.
3 If its smaller than l0 is FLF, otherwise, lk

0 pb is a Lyndon word.

18 / 35

Christoffel
words

Digital
convexity

Algorithms

Duval algorithm
Recursive computation of the First Lyndon Prefix (FLF),

w = l0 l0 l0
p a p b

a > b =⇒ Lyndon fact. starts by lk
0

l ′0

b > a =⇒ lk
0 pb is a Lyndon prefix

0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1
l0 l1 l1 l2

1 Let l0 be a Lyndon prefix and k be it’s number of repetitions.
2 Identify at the first letter that is not that same than in l0.
3 If its smaller than l0 is FLF, otherwise, lk

0 pb is a Lyndon word.

18 / 35

Christoffel
words

Digital
convexity

Algorithms

Duval algorithm
Recursive computation of the First Lyndon Prefix (FLF),

w = l0 l0 l0
p a p b

a > b =⇒ Lyndon fact. starts by lk
0

l ′0

b > a =⇒ lk
0 pb is a Lyndon prefix

0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1
l0 l1 l1 l2

1 Let l0 be a Lyndon prefix and k be it’s number of repetitions.
2 Identify at the first letter that is not that same than in l0.
3 If its smaller than l0 is FLF, otherwise, lk

0 pb is a Lyndon word.

18 / 35

Christoffel
words

Digital
convexity

Algorithms

Duval algorithm
Recursive computation of the First Lyndon Prefix (FLF),

w = l0 l0 l0
p a p b

a > b =⇒ Lyndon fact. starts by lk
0

l ′0

b > a =⇒ lk
0 pb is a Lyndon prefix

0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1
l0 l1 l1 l2

1 Let l0 be a Lyndon prefix and k be it’s number of repetitions.
2 Identify at the first letter that is not that same than in l0.
3 If its smaller than l0 is FLF, otherwise, lk

0 pb is a Lyndon word.
When comparing two different letters, let l0 = (u, v) :

• if |p| = |v | − 1 then
a = 0 and b = 1 and l ′0 is a Christoffel word.

• if |p| 6= |v | − 1 and a = 1 and b = 0 then
l0 is the first edge of the convex hull.

• if |p| 6= |v | − 1 and a = 0 and b = 1 then
Shape is not convex.

Duval++

Convexity test

18 / 35

Christoffel
words

Digital
convexity

Algorithms

The Duval++ algorithm was indroduced to compute a first order re-
construction of a digital shape [Lachaud, P. 11].

Toolbox based on Duval++ for the computation of the tangential cover
are available as OneBalancedWordComputer in the DGtal library.

19 / 35

Digital
planes

Continued
fractions

Construction
process

Unified view

Part III

Recursive structure of digital planes

6 Digital planes

7 Continued fractions

8 Construction process

9 Unified view of Christoffel words and some patches of digital planes

20 / 35

Digital
planes

Continued
fractions

Construction
process

Unified view

Arithmetic digital planes

Definition ([Reveillès 91],[Forchhammer 89])
Digital plane with normal vector
v ∈ R3 \ {0}, shift µ ∈ R and thickness θ.

P(v , µ, θ) = {x ∈ Z3 | 0 ≤ 〈v , x〉+ µ < θ}

In the case where θ = ‖v‖1 then P is called
standard.

(we only consider µ = 0)

• Many definitions and characterizations : [Stojmenovic̀, Tosic̀ 69], [Kim 84],
[Kaufman 87], [Veelaert 93], [Debled-Rennesson 95], [Andrès, Acharya, Sibata 97],
. . . [Labbé, Reutenauer 14]

• Recurrent structure : [Vuillon 96], [Arnoux, Berthé, Siegel 04] [Brimkov, Barneva 05],
[Berthé 11].

• Topology : [Jamet, Toutant 09], [Domenjoud, Jamet, Toutant 09]

21 / 35

Digital
planes

Continued
fractions

Construction
process

Unified view

Arithmetic digital planes

Definition ([Reveillès 91],[Forchhammer 89])
Digital plane with normal vector
v ∈ R3 \ {0}, shift µ ∈ R and thickness θ.

P(v , µ, θ) = {x ∈ Z3 | 0 ≤ 〈v , x〉+ µ < θ}

In the case where θ = ‖v‖1 then P is called
standard.

(we only consider µ = 0)

• Many definitions and characterizations : [Stojmenovic̀, Tosic̀ 69], [Kim 84],
[Kaufman 87], [Veelaert 93], [Debled-Rennesson 95], [Andrès, Acharya, Sibata 97],
. . . [Labbé, Reutenauer 14]

• Recurrent structure : [Vuillon 96], [Arnoux, Berthé, Siegel 04] [Brimkov, Barneva 05],
[Berthé 11].

• Topology : [Jamet, Toutant 09], [Domenjoud, Jamet, Toutant 09]

21 / 35

Digital
planes

Continued
fractions

Construction
process

Unified view

Continued fractions

• The recursive structure of DSS given by the continued fraction
development of its slope.

• Natural question : “Can we do the same in 3D ?”

• Answer is : “Yes. . . but its more complicated.”

22 / 35

Digital
planes

Continued
fractions

Construction
process

Unified view

Continued fractions

• The recursive structure of DSS given by the continued fraction
development of its slope.

• Natural question : “Can we do the same in 3D ?”

• Answer is : “Yes. . . but its more complicated.”

22 / 35

Digital
planes

Continued
fractions

Construction
process

Unified view

Continued fractions

• The recursive structure of DSS given by the continued fraction
development of its slope.

• Natural question : “Can we do the same in 3D ?”

• Answer is : “Yes. . . but its more complicated.”

22 / 35

Digital
planes

Continued
fractions

Construction
process

Unified view

3D continued fraction algorithms

Euclide algorithm : given two number subtract the smaller to the larger.
(5, 12)→ (5, 7)→ (5, 2)→ (3, 2)→ (1, 2)→ (1, 1)→ (1, 0)

Given three numbers :
• Brun : subtract the second largest to the largest.

(3, 7, 5)→ (3, 2, 5)→ (3, 2, 2)→ (1, 2, 2)→ (1, 2, 0)→ (1, 1, 0)→ (1, 0, 0).

• Selmer : subtract the smallest to the largest.
(3, 7, 5)→ (3, 4, 5)→ (3, 4, 2)→ (3, 2, 2)→ (1, 2, 2)→ (1, 2, 0)→
(1, 1, 0)→ (1, 0, 0).

• Poincaré : subtract the smallest to the mid and the mid to the
largest.
(3, 7, 5)→ (3, 2, 2)→ (1, 2, 0)→ (1, 1, 0)→ (1, 0, 0).

• Arnoux-Rauzy : subtract the sum of the two smallest to the
largest (not always possible).
(3, 7, 5)→ impossible.

• Fully subtractive : subtract the smallest to the two others.
(3, 7, 5)→ (3, 4, 2)→ (1, 2, 2)→ (1, 1, 1)→ (0, 0, 1).

• . . .

23 / 35

Digital
planes

Continued
fractions

Construction
process

Unified view

3D continued fraction algorithms

Euclide algorithm : given two number subtract the smaller to the larger.
(5, 12)→ (5, 7)→ (5, 2)→ (3, 2)→ (1, 2)→ (1, 1)→ (1, 0)

Given three numbers :
• Brun : subtract the second largest to the largest.

(3, 7, 5)→ (3, 2, 5)→ (3, 2, 2)→ (1, 2, 2)→ (1, 2, 0)→ (1, 1, 0)→ (1, 0, 0).

• Selmer : subtract the smallest to the largest.
(3, 7, 5)→ (3, 4, 5)→ (3, 4, 2)→ (3, 2, 2)→ (1, 2, 2)→ (1, 2, 0)→
(1, 1, 0)→ (1, 0, 0).

• Poincaré : subtract the smallest to the mid and the mid to the
largest.
(3, 7, 5)→ (3, 2, 2)→ (1, 2, 0)→ (1, 1, 0)→ (1, 0, 0).

• Arnoux-Rauzy : subtract the sum of the two smallest to the
largest (not always possible).
(3, 7, 5)→ impossible.

• Fully subtractive : subtract the smallest to the two others.
(3, 7, 5)→ (3, 4, 2)→ (1, 2, 2)→ (1, 1, 1)→ (0, 0, 1).

• . . .

23 / 35

Digital
planes

Continued
fractions

Construction
process

Unified view

From CF to digital plane
Given a morphism σ : {1, 2, 3} 7→ {1, 2, 3}∗,

E∗1 (σ) :


7→
7→

7→

[Ito, Ohtsuki 93], [Ito, Ohtsuki 94], [Arnoux, Ito 01]

CF algo. −→ Matrix −→ Word morphism

(a, b, c)
↓

(a, b − a, c − a)
−→

[1 1 1
0 1 0
0 0 1

]
−→ σ =

{ 1 7→ 1
2 7→ 12
3 7→ 13

Theorem ([Arnoux, Ito 01])
Let Dv be the visible faces of the voxels of P(v , 0), then if σ is
primitive and unimodular,

E∗1 (σ)(Dv) = DMT
σ v .

24 / 35

Digital
planes

Continued
fractions

Construction
process

Unified view

From CF to digital plane
Given a morphism σ : {1, 2, 3} 7→ {1, 2, 3}∗,

E∗1 (σ) :


7→
7→

7→

[Ito, Ohtsuki 93], [Ito, Ohtsuki 94], [Arnoux, Ito 01]

CF algo. −→ Matrix −→ Word morphism

(a, b, c)
↓

(a, b − a, c − a)
−→

[1 1 1
0 1 0
0 0 1

]
−→ σ =

{ 1 7→ 1
2 7→ 12
3 7→ 13

Theorem ([Arnoux, Ito 01])
Let Dv be the visible faces of the voxels of P(v , 0), then if σ is
primitive and unimodular,

E∗1 (σ)(Dv) = DMT
σ v .

24 / 35

Digital
planes

Continued
fractions

Construction
process

Unified view

E∗1 (σ1)
−→

↓ E∗1 (σ2)

E∗1 (σ3)
←−

• Powerfull framework for the study of digital planes
• Generation : [Arnoux, Berthé, Ito 02] [Fernique 09], [Berthé, Bourdon, Jolivet,

Siegel 13], [Furukado, Ito, Yasutomi 13]
• Characterization : [Arnoux, Berthé, Fernique, Jamet 07], [Berthé, Fernique 11]
• Topology :[Berthé, Lacasse, Paquin, P. 13], [Berthé, Jolivet, Siegel 14]

• Still some work to do before practical use.

25 / 35

Digital
planes

Continued
fractions

Construction
process

Unified view

A construction guided by Fully Subtractive
The fully subtractive CF algorithm :

FS ((a, b, c)) =

{
(a, b − a, c − a) if a = min(a, b, c),
(a − b, b, c − b) if b = min(a, b, c),
(a − c,b − c, c) if c = min(a, b, c).

Given a vector v , the execution of the algorithm produces a sequence
of vectors (vn)n≥0 defined by :

• v0 = v ,
• for n ≥ 1, vn = FS(vn−1).

If at one step, 2‖vn‖∞ > ‖vn‖1 (i.e. one coordinate is bigger then the sum of
the two others), then the FS algorithm “fails”.
Examples :

v0 (1, π, 10) (1, π, 20)
v1 (1, π − 1, 9) (1, π − 1, 19)
v2 (1, π − 2, 8) (1, π − 2, 18)
v3 (1, π − 3, 8) (1, π − 3, 18)
v4 (4− π, π − 3, 11− π) (4− π, π − 3, 21− π)
v5 (7− 2π, π − 3, 14− 2π) (7− 2π, π − 3, 24− 2π)

...
...

...

26 / 35

Digital
planes

Continued
fractions

Construction
process

Unified view

A construction guided by Fully Subtractive
The fully subtractive CF algorithm :

FS ((a, b, c)) =

{
(a, b − a, c − a) if a = min(a, b, c),
(a − b, b, c − b) if b = min(a, b, c),
(a − c,b − c, c) if c = min(a, b, c).

Given a vector v , the execution of the algorithm produces a sequence
of vectors (vn)n≥0 defined by :

• v0 = v ,
• for n ≥ 1, vn = FS(vn−1).

If at one step, 2‖vn‖∞ > ‖vn‖1 (i.e. one coordinate is bigger then the sum of
the two others), then the FS algorithm “fails”.
Examples :

v0 (1, π, 10) (1, π, 20)
v1 (1, π − 1, 9) (1, π − 1, 19)
v2 (1, π − 2, 8) (1, π − 2, 18)
v3 (1, π − 3, 8) (1, π − 3, 18)
v4 (4− π, π − 3, 11− π) (4− π, π − 3, 21− π)
v5 (7− 2π, π − 3, 14− 2π) (7− 2π, π − 3, 24− 2π)

...
...

... 26 / 35

Digital
planes

Continued
fractions

Construction
process

Unified view

Construction guided by Fully Subtractive

Definition
Let K be the set of vectors such that 2‖vn‖∞ < ‖v‖1 for all n ≥ 0.

v ∈ K =⇒ lim
n→∞

vn = 0.

27 / 35

Digital
planes

Continued
fractions

Construction
process

Unified view

Construction guided by Fully Subtractive

Definition ([Domenjoud,Vuillon 12],[Berthé, Jamet, Jolivet, P. 2013])
For all n ≥ 0, let :

• Mn be the matrix such that vn+1 = Mnvn.
• δn be the index of the smallest coordinate of vn.
• θn = 〈vn, eδn〉. (the quantity that is subtracted to the two other coordinates of

vn).
• Tn = MT

0 MT
1 · · ·MT

n−1eδn ,

• θn = 〈vn, eδn〉 = 〈Mn−1 · · ·M0v , eδn〉 = 〈v ,M
T
0 · · ·MT

n−1eδn︸ ︷︷ ︸
Tn

〉.

•
∑
n≥0

θn =
‖v‖1

2 .

• For all finite I ⊂ N, let TI =
∑

i∈I Ti , we have :

• 0 ≤ 〈v , TI〉 <
‖v‖1

2
, • TI ∈ P(v , 0,

‖v‖1
2

).

28 / 35

Digital
planes

Continued
fractions

Construction
process

Unified view

Construction guided by Fully Subtractive

Definition ([Berthé, Domenjoud, Jamet, P. 13])

• Let P0 = {(0, 0, 0)},
• For all n ≥ 1 let Pn = Pn−1 ∪ (Tn + Pn−1)

Theorem ([Domenjoud, P., Vuillon 14])
If v ∈ K, then P∞ = P(v , 0, ‖v‖1

2)

Examples :
• v = (β, 2β + β2, 1) ∈ K où β est la racine réelle de x 3 + 2x 2 + 2x − 1.

T0 =(1, 0, 0)
T1 =(−1, 1, 0)
T2 =(−1, 1, 0)
T3 =(1,−2, 1)
T4 =(1,−2, 1)
T5 =(1, 2,−2)
T6 =(1, 2,−2)
T7 =(−5, 1, 2)
T8 =(−5, 1, 2)
T9 =(9,−8, 1)

29 / 35

Digital
planes

Continued
fractions

Construction
process

Unified view

Construction guided by Fully Subtractive

Definition ([Berthé, Domenjoud, Jamet, P. 13])

• Let P0 = {(0, 0, 0)},
• For all n ≥ 1 let Pn = Pn−1 ∪ (Tn + Pn−1)

Theorem ([Domenjoud, P., Vuillon 14])
If v ∈ K, then P∞ = P(v , 0, ‖v‖1

2)

Examples :
• v = (β, 2β + β2, 1) ∈ K où β est la racine réelle de x 3 + 2x 2 + 2x − 1.

T0 =(1, 0, 0)
T1 =(−1, 1, 0)
T2 =(−1, 1, 0)
T3 =(1,−2, 1)
T4 =(1,−2, 1)
T5 =(1, 2,−2)
T6 =(1, 2,−2)
T7 =(−5, 1, 2)
T8 =(−5, 1, 2)
T9 =(9,−8, 1)

29 / 35

Digital
planes

Continued
fractions

Construction
process

Unified view

Construction guided by Fully Subtractive

Definition ([Berthé, Domenjoud, Jamet, P. 13])

• Let P0 = {(0, 0, 0)},
• For all n ≥ 1 let Pn = Pn−1 ∪ (Tn + Pn−1)

Theorem ([Domenjoud, P., Vuillon 14])
If v ∈ K, then P∞ = P(v , 0, ‖v‖1

2)

Examples :
• v = (β, 2β + β2, 1) ∈ K où β est la racine réelle de x 3 + 2x 2 + 2x − 1.

T0 =(1, 0, 0)

T1 =(−1, 1, 0)
T2 =(−1, 1, 0)
T3 =(1,−2, 1)
T4 =(1,−2, 1)
T5 =(1, 2,−2)
T6 =(1, 2,−2)
T7 =(−5, 1, 2)
T8 =(−5, 1, 2)
T9 =(9,−8, 1)

29 / 35

Digital
planes

Continued
fractions

Construction
process

Unified view

Construction guided by Fully Subtractive

Definition ([Berthé, Domenjoud, Jamet, P. 13])

• Let P0 = {(0, 0, 0)},
• For all n ≥ 1 let Pn = Pn−1 ∪ (Tn + Pn−1)

Theorem ([Domenjoud, P., Vuillon 14])
If v ∈ K, then P∞ = P(v , 0, ‖v‖1

2)

Examples :
• v = (β, 2β + β2, 1) ∈ K où β est la racine réelle de x 3 + 2x 2 + 2x − 1.

T0 =(1, 0, 0)
T1 =(−1, 1, 0)

T2 =(−1, 1, 0)
T3 =(1,−2, 1)
T4 =(1,−2, 1)
T5 =(1, 2,−2)
T6 =(1, 2,−2)
T7 =(−5, 1, 2)
T8 =(−5, 1, 2)
T9 =(9,−8, 1)

29 / 35

Digital
planes

Continued
fractions

Construction
process

Unified view

Construction guided by Fully Subtractive

Definition ([Berthé, Domenjoud, Jamet, P. 13])

• Let P0 = {(0, 0, 0)},
• For all n ≥ 1 let Pn = Pn−1 ∪ (Tn + Pn−1)

Theorem ([Domenjoud, P., Vuillon 14])
If v ∈ K, then P∞ = P(v , 0, ‖v‖1

2)

Examples :
• v = (β, 2β + β2, 1) ∈ K où β est la racine réelle de x 3 + 2x 2 + 2x − 1.

T0 =(1, 0, 0)
T1 =(−1, 1, 0)
T2 =(−1, 1, 0)

T3 =(1,−2, 1)
T4 =(1,−2, 1)
T5 =(1, 2,−2)
T6 =(1, 2,−2)
T7 =(−5, 1, 2)
T8 =(−5, 1, 2)
T9 =(9,−8, 1)

29 / 35

Digital
planes

Continued
fractions

Construction
process

Unified view

Construction guided by Fully Subtractive

Definition ([Berthé, Domenjoud, Jamet, P. 13])

• Let P0 = {(0, 0, 0)},
• For all n ≥ 1 let Pn = Pn−1 ∪ (Tn + Pn−1)

Theorem ([Domenjoud, P., Vuillon 14])
If v ∈ K, then P∞ = P(v , 0, ‖v‖1

2)

Examples :
• v = (β, 2β + β2, 1) ∈ K où β est la racine réelle de x 3 + 2x 2 + 2x − 1.

T0 =(1, 0, 0)
T1 =(−1, 1, 0)
T2 =(−1, 1, 0)
T3 =(1,−2, 1)

T4 =(1,−2, 1)
T5 =(1, 2,−2)
T6 =(1, 2,−2)
T7 =(−5, 1, 2)
T8 =(−5, 1, 2)
T9 =(9,−8, 1)

29 / 35

Digital
planes

Continued
fractions

Construction
process

Unified view

Construction guided by Fully Subtractive

Definition ([Berthé, Domenjoud, Jamet, P. 13])

• Let P0 = {(0, 0, 0)},
• For all n ≥ 1 let Pn = Pn−1 ∪ (Tn + Pn−1)

Theorem ([Domenjoud, P., Vuillon 14])
If v ∈ K, then P∞ = P(v , 0, ‖v‖1

2)

Examples :
• v = (β, 2β + β2, 1) ∈ K où β est la racine réelle de x 3 + 2x 2 + 2x − 1.

T0 =(1, 0, 0)
T1 =(−1, 1, 0)
T2 =(−1, 1, 0)
T3 =(1,−2, 1)
T4 =(1,−2, 1)

T5 =(1, 2,−2)
T6 =(1, 2,−2)
T7 =(−5, 1, 2)
T8 =(−5, 1, 2)
T9 =(9,−8, 1)

29 / 35

Digital
planes

Continued
fractions

Construction
process

Unified view

Construction guided by Fully Subtractive

Definition ([Berthé, Domenjoud, Jamet, P. 13])

• Let P0 = {(0, 0, 0)},
• For all n ≥ 1 let Pn = Pn−1 ∪ (Tn + Pn−1)

Theorem ([Domenjoud, P., Vuillon 14])
If v ∈ K, then P∞ = P(v , 0, ‖v‖1

2)

Examples :
• v = (β, 2β + β2, 1) ∈ K où β est la racine réelle de x 3 + 2x 2 + 2x − 1.

T0 =(1, 0, 0)
T1 =(−1, 1, 0)
T2 =(−1, 1, 0)
T3 =(1,−2, 1)
T4 =(1,−2, 1)
T5 =(1, 2,−2)

T6 =(1, 2,−2)
T7 =(−5, 1, 2)
T8 =(−5, 1, 2)
T9 =(9,−8, 1)

29 / 35

Digital
planes

Continued
fractions

Construction
process

Unified view

Construction guided by Fully Subtractive

Definition ([Berthé, Domenjoud, Jamet, P. 13])

• Let P0 = {(0, 0, 0)},
• For all n ≥ 1 let Pn = Pn−1 ∪ (Tn + Pn−1)

Theorem ([Domenjoud, P., Vuillon 14])
If v ∈ K, then P∞ = P(v , 0, ‖v‖1

2)

Examples :
• v = (β, 2β + β2, 1) ∈ K où β est la racine réelle de x 3 + 2x 2 + 2x − 1.

T0 =(1, 0, 0)
T1 =(−1, 1, 0)
T2 =(−1, 1, 0)
T3 =(1,−2, 1)
T4 =(1,−2, 1)
T5 =(1, 2,−2)
T6 =(1, 2,−2)

T7 =(−5, 1, 2)
T8 =(−5, 1, 2)
T9 =(9,−8, 1)

29 / 35

Digital
planes

Continued
fractions

Construction
process

Unified view

Construction guided by Fully Subtractive

Definition ([Berthé, Domenjoud, Jamet, P. 13])

• Let P0 = {(0, 0, 0)},
• For all n ≥ 1 let Pn = Pn−1 ∪ (Tn + Pn−1)

Theorem ([Domenjoud, P., Vuillon 14])
If v ∈ K, then P∞ = P(v , 0, ‖v‖1

2)

Examples :
• v = (β, 2β + β2, 1) ∈ K où β est la racine réelle de x 3 + 2x 2 + 2x − 1.

T0 =(1, 0, 0)
T1 =(−1, 1, 0)
T2 =(−1, 1, 0)
T3 =(1,−2, 1)
T4 =(1,−2, 1)
T5 =(1, 2,−2)
T6 =(1, 2,−2)
T7 =(−5, 1, 2)

T8 =(−5, 1, 2)
T9 =(9,−8, 1)

29 / 35

Digital
planes

Continued
fractions

Construction
process

Unified view

Construction guided by Fully Subtractive

Definition ([Berthé, Domenjoud, Jamet, P. 13])

• Let P0 = {(0, 0, 0)},
• For all n ≥ 1 let Pn = Pn−1 ∪ (Tn + Pn−1)

Theorem ([Domenjoud, P., Vuillon 14])
If v ∈ K, then P∞ = P(v , 0, ‖v‖1

2)

Examples :
• v = (β, 2β + β2, 1) ∈ K où β est la racine réelle de x 3 + 2x 2 + 2x − 1.

T0 =(1, 0, 0)
T1 =(−1, 1, 0)
T2 =(−1, 1, 0)
T3 =(1,−2, 1)
T4 =(1,−2, 1)
T5 =(1, 2,−2)
T6 =(1, 2,−2)
T7 =(−5, 1, 2)
T8 =(−5, 1, 2)

T9 =(9,−8, 1)

29 / 35

Digital
planes

Continued
fractions

Construction
process

Unified view

Construction guided by Fully Subtractive

Definition ([Berthé, Domenjoud, Jamet, P. 13])

• Let P0 = {(0, 0, 0)},
• For all n ≥ 1 let Pn = Pn−1 ∪ (Tn + Pn−1)

Theorem ([Domenjoud, P., Vuillon 14])
If v ∈ K, then P∞ = P(v , 0, ‖v‖1

2)

Examples :
• v = (β, 2β + β2, 1) ∈ K où β est la racine réelle de x 3 + 2x 2 + 2x − 1.

T0 =(1, 0, 0)
T1 =(−1, 1, 0)
T2 =(−1, 1, 0)
T3 =(1,−2, 1)
T4 =(1,−2, 1)
T5 =(1, 2,−2)
T6 =(1, 2,−2)
T7 =(−5, 1, 2)
T8 =(−5, 1, 2)
T9 =(9,−8, 1)

29 / 35

Digital
planes

Continued
fractions

Construction
process

Unified view

Tree structure

Theorem ([Domenjoud, Vuillon 12])
The adjacency graph of Pn has a tree rooted in ~0.

30 / 35

Digital
planes

Continued
fractions

Construction
process

Unified view

Reinterpretation of the Christoffel tree

How to draw the Christoffel
word with normal vector (3, 8)
?

x

y

• Exclude the first and the
last steps, we’ll add them
back at the end.

• At each step, replace one
side by the whole pattern.

(u, v)

(u, uv) (uv , v)

Pattern slope Euclid
algorithm

1
1 (3, 8)

1
2 (3, 5)

1
3 (3, 2)

2
5 (1, 2)

3
8 (1, 1)

31 / 35

Digital
planes

Continued
fractions

Construction
process

Unified view

Unified view for patches of discrete planes

x y

z

Pattern Normal
vector

Fully
subtractive
algorithm

(1, 1, 1) (6, 8, 11)

(1, 2, 2) (6, 2, 5)

(2, 3, 4) (4, 2, 3)

(3, 4, 6) (2, 2, 1)

(6, 8, 11) (1, 1, 1)
32 / 35

Digital
planes

Continued
fractions

Construction
process

Unified view

From pattern to digital plane

(6, 8, 11)

33 / 35

Digital
planes

Continued
fractions

Construction
process

Unified view

From pattern to digital plane

(6, 8, 11)

33 / 35

Digital
planes

Continued
fractions

Construction
process

Unified view

From pattern to digital plane

(6, 8, 11)

33 / 35

Digital
planes

Continued
fractions

Construction
process

Unified view

From pattern to digital plane

(6, 8, 11)

33 / 35

Digital
planes

Continued
fractions

Construction
process

Unified view

Mission accomplished ?

• No !

34 / 35

Digital
planes

Continued
fractions

Construction
process

Unified view

Mission accomplished ?
• No !

34 / 35

Digital
planes

Continued
fractions

Construction
process

Unified view

Mission accomplished ?
• No !

Theorem ([Kraaikamp, Meester 95])
The set K is a mesure-zero set.

Construction deals only with :
• vectors of K,
• integer vectors such that

FS reaches (1, 1, 1).

{(x/z, y/z) | x ≤ y ≤ z and our construction deals with (x , y , z)}
34 / 35

Digital
planes

Continued
fractions

Construction
process

Unified view

Merci pour votre attention

Fin

35 / 35

	Image analysis
	Shape analysis
	DSS on the boundary of digital shapes

	Recursive structure of digital lines
	Christoffel words
	Digital convexity
	Algorithms

	Recursive structure of digital planes
	Digital planes
	Continued fractions
	Construction process
	Unified view of Christoffel words and some patches of digital planes

