Structutre des plans discrets minces

X. Provençal,

collaboration avec V. Berthé, É. Domenjoud, D. Jamet, T. Jolivet

23 juillet 2020

Droites et plans discrets

・ロ・・母・・ヨ・・ヨ・ ヨ・ うへぐ

・ロ・・雪・・ヨ・・ヨ・ シへぐ

・ロト・白 ・ ・ ヨ ・ ・ ヨ ・ うへぐ

Définition (Montarani (1970) et Sklansky Chazin, Hansen (1972))

The minimum length polygon of C is a subset $P \in \mathbb{R}^2$ such that, $P = \operatorname{arg min}_{A \in \mathcal{A}, \operatorname{IC}(C) \subseteq A, \ \partial A \subset \operatorname{OC}(C) \setminus \operatorname{IC}(C)^{\circ}} \operatorname{Per}(A)$ where \mathcal{A} is the family of simply connected compact sets of \mathbb{R}^2 .

イロト イポト イヨト イヨト

Définition (Montarani (1970) et Sklansky Chazin, Hansen (1972))

The minimum length polygon of C is a subset $P \in \mathbb{R}^2$ such that, $P = \operatorname{arg min}_{A \in \mathcal{A}, \operatorname{IC}(C) \subseteq A, \ \partial A \subset \operatorname{OC}(C) \setminus \operatorname{IC}(C)^{\circ}}$ where \mathcal{A} is the family of simply connected compact sets of \mathbb{R}^2 .

イロト イポト イヨト イヨト

Définition (Montarani (1970) et Sklansky Chazin, Hansen (1972))

The minimum length polygon of C is a subset $P \in \mathbb{R}^2$ such that, $P = \operatorname{arg min}_{A \in \mathcal{A}, \operatorname{IC}(C) \subseteq A, \ \partial A \subset \operatorname{OC}(C) \setminus \operatorname{IC}(C)^{\circ}} \operatorname{Per}(A)$ where \mathcal{A} is the family of simply connected compact sets of \mathbb{R}^2 .

-

イロン イロン イヨン イヨン

The MLP is a polygonal line whose vertices are centers of pixels along the inner or the outer contour, also :

- unique;
- a good length estimator¹;
- a good tangent estimator;
- characteristic of the shape's convexity;
- reversible².
- ¹ Proved to be convergent on convex shapes.
- ² If aligned vertices are considered.

MLP is computable in time linear with respect of the length of C.

- J.-O. Lachaud, X. Provençal, Two linear-time algorithms for computing the minimum length polygon of a digital contour, Discrete Applied Mathematics (DAM), 2011.
- Tristan Roussillon, Isabelle Sivignon. Faithful polygonal representation of the convex and concave parts of a digital curve. Pattern Recognition, volume 44, issues 10-11, p. 2693-2700, 2011.

Fig. 4. Example of the minimization process using the Greedy1 algorithm. The gradient is computed with the Canny-Deriche method with scale coefficient 0.2. The input image represents a half-plane. (First row) Initialisation of the DDM. (Second row) Results of the minimisation process, the α coefficient used is equal to 0. (Third row) Results with $\alpha = 200$. (Fifth row) Results with $\alpha = 300$.

- F. de Vieilleville and J.-O. Lachaud, *Digital Deformable Model Simulating Active Contours*, in proc. DGCl2009, LNCS 5810, p.203-216, 2009.
- G. Damiand, A. Dupas and J.-O. Lachaud, Combining Topological Maps, Multi-Label Simple Points, and Minimum-Length Polygons for Efficient Digital Partition Model, in proc. IWCIA2011, LNCS 6636, p. 208-221, 2011.

 $[(8, 3), (2, 1)^3]$

• J.-O. Lachaud, X. Provençal, *Dynamic Minimum Length MLP*, in proc. IWCIA2011, LNCS 6636, p. 208-221, 2011.

 $[(8,3),(2,1)^3] \equiv [\widetilde{(2,5)},\widetilde{(3,1)},(2,1)^3]$

• J.-O. Lachaud, X. Provençal, *Dynamic Minimum Length MLP*, in proc. IWCIA2011, LNCS 6636, p. 208-221, 2011.

3

 $[(8,3),(2,1)^3] \equiv \widetilde{[(2,5)},(1,2),\widetilde{(1,0)},(2,1)^3]$

• J.-O. Lachaud, X. Provençal, *Dynamic Minimum Length MLP*, in proc. IWCIA2011, LNCS 6636, p. 208-221, 2011.

3

 $[(8,3),(2,1)^3] \equiv \widetilde{[(2,5)},(1,2),\widetilde{(1,0)},(2,1),(2,1)^2]$

• J.-O. Lachaud, X. Provençal, *Dynamic Minimum Length MLP*, in proc. IWCIA2011, LNCS 6636, p. 208-221, 2011.

 $[(8,3),(2,1)^3] \equiv \widetilde{[(2,5)},(1,2),\widetilde{(1,0)},\widetilde{(1,1)},\widetilde{(1,0)},(2,1)^2]$

• J.-O. Lachaud, X. Provençal, *Dynamic Minimum Length MLP*, in proc. IWCIA2011, LNCS 6636, p. 208-221, 2011.

 $[(8,3),(2,1)^3] \equiv \widetilde{[(2,5)},(1,2),\widetilde{(1,0)},\widetilde{(1,0)},(0,1),\widetilde{(1,0)},(2,1)^2]$

• J.-O. Lachaud, X. Provençal, *Dynamic Minimum Length MLP*, in proc. IWCIA2011, LNCS 6636, p. 208-221, 2011.

 $[(8,3),(2,1)^3] \equiv \widetilde{[(2,5)},(1,2),(1,1)(0,1),\widetilde{(5,2)}]$

• J.-O. Lachaud, X. Provençal, *Dynamic Minimum Length MLP*, in proc. IWCIA2011, LNCS 6636, p. 208-221, 2011.

 $[(8,3),(2,1)^3] \equiv [\widetilde{(2,5)},(1,2)^2,\widetilde{(5,2)}]$

• J.-O. Lachaud, X. Provençal, *Dynamic Minimum Length MLP*, in proc. IWCIA2011, LNCS 6636, p. 208-221, 2011.

 $[(8,3),(2,1)^3] \equiv [\widetilde{(2,5)},\widetilde{(9,4)}]$

• J.-O. Lachaud, X. Provençal, *Dynamic Minimum Length MLP*, in proc. IWCIA2011, LNCS 6636, p. 208-221, 2011.

L'hyperplan discret $P(v, \mu, \omega)$ de vecteur normal $v \in \mathbb{R}^n$, de décalage $\mu \in \mathbb{R}$ et d'épaisseur $\omega \in R_+$ est le sous-ensemble de \mathbb{Z}^n défini par :

$$P(\mathbf{v},\mu,\omega) = \{ \mathbf{x} \in \mathbb{Z}^n \mid \mathbf{0} \le \langle \mathbf{x}, \mathbf{v} \rangle + \mu < \omega \}$$

L'hyperplan discret $P(v, \mu, \omega)$ de vecteur normal $v \in \mathbb{R}^n$, de décalage $\mu \in \mathbb{R}$ et d'épaisseur $\omega \in R_+$ est le sous-ensemble de \mathbb{Z}^n défini par :

$$P(\mathbf{v},\mu,\omega) = \{ \mathbf{x} \in \mathbb{Z}^n \mid \mathbf{0} \le \langle \mathbf{x},\mathbf{v} \rangle + \mu < \omega \}$$

L'hyperplan discret $P(v, \mu, \omega)$ de vecteur normal $v \in \mathbb{R}^n$, de décalage $\mu \in \mathbb{R}$ et d'épaisseur $\omega \in R_+$ est le sous-ensemble de \mathbb{Z}^n défini par :

$$P(\mathbf{v},\mu,\omega) = \{ \mathbf{x} \in \mathbb{Z}^n \mid \mathbf{0} \le \langle \mathbf{x},\mathbf{v} \rangle + \mu < \omega \}$$

L'hyperplan discret $P(v, \mu, \omega)$ de vecteur normal $v \in \mathbb{R}^n$, de décalage $\mu \in \mathbb{R}$ et d'épaisseur $\omega \in R_+$ est le sous-ensemble de \mathbb{Z}^n défini par :

$$P(\mathbf{v},\mu,\omega) = \{ \mathbf{x} \in \mathbb{Z}^n \mid \mathbf{0} \le \langle \mathbf{x},\mathbf{v} \rangle + \mu < \omega \}$$

L'hyperplan discret $P(v, \mu, \omega)$ de vecteur normal $v \in \mathbb{R}^n$, de décalage $\mu \in \mathbb{R}$ et d'épaisseur $\omega \in R_+$ est le sous-ensemble de \mathbb{Z}^n défini par :

$$P(\mathbf{v},\mu,\omega) = \{ \mathbf{x} \in \mathbb{Z}^n \mid \mathbf{0} \le \langle \mathbf{x},\mathbf{v} \rangle + \mu < \omega \}$$

3

L'hyperplan discret $P(v, \mu, \omega)$ de vecteur normal $v \in \mathbb{R}^n$, de décalage $\mu \in \mathbb{R}$ et d'épaisseur $\omega \in R_+$ est le sous-ensemble de \mathbb{Z}^n défini par :

$$P(\mathbf{v},\mu,\omega) = \{ \mathbf{x} \in \mathbb{Z}^n \mid \mathbf{0} \le \langle \mathbf{x},\mathbf{v} \rangle + \mu < \omega \}$$

Définition

Deux points x, y de \mathbb{Z}^d sont *k*-connexes si

$$||x - y||_{\infty} \le 1$$
 et $||x - y||_1 \le d - k$.

On considère un vecteur $v \in \mathbb{R}^d$, un réel $\mu \in \mathbb{R}$ et un entier $\kappa \in \{0, 1, \cdots, d-1\}$. Déterminer $\Omega_{\kappa}(v, \mu) = \inf \{\omega \in \mathbb{R} \mid P(v, \mu, \omega) \text{ est } \kappa\text{-connexe}\}$

On considère un vecteur $v \in \mathbb{R}^d$, un réel $\mu \in \mathbb{R}$ et un entier $\kappa \in \{0, 1, \cdots, d-1\}$. Déterminer $\Omega_{\kappa}(v, \mu) = \inf \{ \omega \in \mathbb{R} \mid P(v, \mu, \omega) \text{ est } \kappa\text{-connexe} \}$

•
$$\Omega_{\kappa}(\alpha v, \alpha \mu) = \alpha \Omega_{\kappa}(v, \mu).$$

On considère un vecteur $v \in \mathbb{R}^d$, un réel $\mu \in \mathbb{R}$ et un entier $\kappa \in \{0, 1, \cdots, d-1\}$. Déterminer $\Omega_{\kappa}(v, \mu) = \inf \{ \omega \in \mathbb{R} \mid P(v, \mu, \omega) \text{ est } \kappa\text{-connexe} \}$

- $\Omega_{\kappa}(\alpha v, \alpha \mu) = \alpha \Omega_{\kappa}(v, \mu).$
- Soit σ une permutation, $\Omega_{\kappa}(v,\mu) = \Omega_{\kappa}(\sigma(v),\mu)$.

On considère un vecteur $v \in \mathbb{R}^d$, un réel $\mu \in \mathbb{R}$ et un entier $\kappa \in \{0, 1, \cdots, d-1\}$. Déterminer $\Omega_{\kappa}(v, \mu) = \inf \{ \omega \in \mathbb{R} \mid P(v, \mu, \omega) \text{ est } \kappa\text{-connexe} \}$

- $\Omega_{\kappa}(\alpha \nu, \alpha \mu) = \alpha \Omega_{\kappa}(\nu, \mu).$
- Soit σ une permutation, $\Omega_{\kappa}(v,\mu) = \Omega_{\kappa}(\sigma(v),\mu)$.
- Si v possède d-1 composantes nulles, alors $\Omega_{\kappa}(v,\mu) = \mu \mod \|v\|_{\infty}$.

On considère un vecteur $v \in \mathbb{R}^d$, un réel $\mu \in \mathbb{R}$ et un entier $\kappa \in \{0, 1, \cdots, d-1\}$. Déterminer $\Omega_{\kappa}(v, \mu) = \inf \{ \omega \in \mathbb{R} \mid P(v, \mu, \omega) \text{ est } \kappa\text{-connexe} \}$

- $\Omega_{\kappa}(\alpha v, \alpha \mu) = \alpha \Omega_{\kappa}(v, \mu).$
- Soit σ une permutation, $\Omega_{\kappa}(v,\mu) = \Omega_{\kappa}(\sigma(v),\mu)$.
- Si v possède d-1 composantes nulles, alors $\Omega_{\kappa}(v,\mu) = \mu \mod \|v\|_{\infty}$.
- Si v possède au moins deux composantes non-nulles, alors $\Omega_{d-1}(v,\mu) \ge \|v\|_{\infty}$.

Théorème (Domenjoud, Jamet, Toutant, 2009)

So t $v = (v_1, v_2, v_3) \in \mathbb{R}^3_+$, avec $v_1 \leq v_2 \leq v_3$, $\mu \in \mathbb{R}_+$ alors

$$\Omega_2\left(\left(\begin{array}{c}v_1\\v_2\\v_3\end{array}\right),\mu\right)=\Omega_2\left(\left(\begin{array}{c}v_1\\v_2-v_1\\v_3-v_1\end{array}\right),\mu\right)+v_1.$$

Théorème (Domenjoud, Jamet, Toutant, 2009)

So t $v = (v_1, v_2, v_3) \in \mathbb{R}^3_+$, avec $v_1 \leq v_2 \leq v_3$, $\mu \in \mathbb{R}_+$ alors

$$\Omega_2\left(\left(\begin{array}{c} v_1\\ v_2\\ v_3\end{array}\right), \mu\right) = \Omega_2\left(\left(\begin{array}{c} v_1\\ v_2 - v_1\\ v_3 - v_1\end{array}\right), \mu\right) + v_1.$$

Démonstration.

On se rappelle que $\langle x, v \rangle = \langle {}^t M^{-1} x, M v \rangle$ et on pose

$$M = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}, P_1 := P(v, \mu, \omega), P_2 := P(Mv, \mu, \omega - v_1).$$

On montre que

 P_1 est 2-connexe $\iff P_2$ est 2-connexe.

10/1

Théorème (Domenjoud, Jamet, Toutant, 2009)

So t $v = (v_1, v_2, v_3) \in \mathbb{R}^3_+$, avec $v_1 \leq v_2 \leq v_3$, $\mu \in \mathbb{R}_+$ alors

$$\Omega_2\left(\left(\begin{array}{c} v_1\\ v_2\\ v_3\end{array}\right), \mu\right) = \Omega_2\left(\left(\begin{array}{c} v_1\\ v_2 - v_1\\ v_3 - v_1\end{array}\right), \mu\right) + v_1.$$

Démonstration.

On se rappelle que $\langle x, v \rangle = \langle {}^t M^{-1} x, M v \rangle$ et on pose

$$M = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}, P_1 := P(v, \mu, \omega), P_2 := P(Mv, \mu, \omega - v_1).$$

On montre que

 P_1 est 2-connexe $\iff P_2$ est 2-connexe.

10/1

Calcul de l'épaisseur minimale

$$\Omega_2\left(\left(\begin{array}{c} v_1\\ v_2\\ v_3\end{array}\right), \mu\right) = \Omega_2\left(\left(\begin{array}{c} v_1\\ v_2 - v_1\\ v_3 - v_1\end{array}\right), \mu\right) + v_1.$$

Étant donné un vecteur $v\in \mathbb{R}^3_+$, on pose $v^{(0)}=v$, $\omega^{(0)}=0$ et pour $n\geq 1$,

$$\begin{array}{lll} \Omega_2(v,\mu) & = & \Omega_2(v^{(n)},\mu) + \omega^{(n)} \\ v^{(n)} & = & M v^{(n-1)} \end{array}$$

où $M = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}$.

$$\Omega_2\left(\left(\begin{array}{c} v_1\\ v_2\\ v_3\end{array}\right), \mu\right) = \Omega_2\left(\left(\begin{array}{c} v_1\\ v_2 - v_1\\ v_3 - v_1\end{array}\right), \mu\right) + v_1.$$

Étant donné un vecteur $v \in \mathbb{R}^3_+$, on pose $v^{(0)} = v$, $\omega^{(0)} = 0$ et pour $n \geq 1$,

$$\begin{array}{lll} \Omega_{2}(v,\mu) & = & \Omega_{2}(v^{(n)},\mu) + \omega^{(n)} \\ v^{(n)} & = & Mv^{(n-1)} \end{array}$$

où $M = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}$.

Algorithme

• Si il exite $n \ge 0$ tel que $v^{(n)} = (0, 0, h)$ (rat. dép.) :

$$\Omega_2(v,\mu) = \omega^{(n)} + (\mu \mod h).$$

$$\Omega_2\left(\left(\begin{array}{c} v_1\\ v_2\\ v_3\end{array}\right), \mu\right) = \Omega_2\left(\left(\begin{array}{c} v_1\\ v_2 - v_1\\ v_3 - v_1\end{array}\right), \mu\right) + v_1.$$

Étant donné un vecteur $v\in \mathbb{R}^3_+$, on pose $v^{(0)}=v$, $\omega^{(0)}=0$ et pour $n\geq 1$,

$$\begin{array}{lll} \Omega_{2}(v,\mu) & = & \Omega_{2}(v^{(n)},\mu) + \omega^{(n)} \\ v^{(n)} & = & Mv^{(n-1)} \end{array}$$

où $M = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}$.

Algorithme

• Si il exite $n \ge 0$ tel que $v^{(n)} = (0, 0, h)$ (rat. dép.) :

$$\Omega_2(v,\mu) = \omega^{(n)} + (\mu \mod h).$$

• Sinon, (rat. indép.), on a $\Omega_2(v,\mu) = \|v^{(\infty)}\|_{\infty} + \omega^{(\infty)}$.

<ロ> <同> <同> < 回> < 回>

$$\Omega_2\left(\left(\begin{array}{c} v_1\\ v_2\\ v_3\end{array}\right), \mu\right) = \Omega_2\left(\left(\begin{array}{c} v_1\\ v_2 - v_1\\ v_3 - v_1\end{array}\right), \mu\right) + v_1.$$

Étant donné un vecteur $v \in \mathbb{R}^3_+$, on pose $v^{(0)} = v$, $\omega^{(0)} = 0$ et pour $n \geq 1$,

$$\begin{array}{lll} \Omega_{2}(v,\mu) & = & \Omega_{2}(v^{(n)},\mu) + \omega^{(n)} \\ v^{(n)} & = & Mv^{(n-1)} \end{array}$$

où $M = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}$.

Algorithme

• Si il exite $n \ge 0$ tel que $v^{(n)} = (0, 0, h)$ (rat. dép.) :

$$\Omega_2(v,\mu) = \omega^{(n)} + (\mu \mod h).$$

• Sinon, (rat. indép.), on a $\Omega_2(v,\mu) = \|v^{(\infty)}\|_{\infty} + \omega^{(\infty)}$.

• S'il existe $n \ge 0$ tel que $v_3^{(n)} \ge v_1^{(n)} + v_2^{(n)}$ alors $\Omega_2(v, \mu) = v_3^{(n)} + \omega^{(n)}$.

・ロ・・聞・・ (明・・日・)

$$\Omega_2\left(\left(\begin{array}{c} v_1\\ v_2\\ v_3\end{array}\right), \mu\right) = \Omega_2\left(\left(\begin{array}{c} v_1\\ v_2 - v_1\\ v_3 - v_1\end{array}\right), \mu\right) + v_1.$$

Étant donné un vecteur $v\in \mathbb{R}^3_+$, on pose $v^{(0)}=v$, $\omega^{(0)}=0$ et pour $n\geq 1$,

$$\begin{array}{lll} \Omega_{2}(v,\mu) & = & \Omega_{2}(v^{(n)},\mu) + \omega^{(n)} \\ v^{(n)} & = & Mv^{(n-1)} \end{array}$$

où $M = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}$.

Algorithme

• Si il exite $n \ge 0$ tel que $v^{(n)} = (0, 0, h)$ (rat. dép.) :

$$\Omega_2(v,\mu) = \omega^{(n)} + (\mu \mod h).$$

• Sinon, (rat. indép.), on a $\Omega_2(v,\mu) = \|v^{(\infty)}\|_{\infty} + \omega^{(\infty)}$.

• S'il existe
$$n \geq 0$$
 tel que $v_3^{(n)} \geq v_1^{(n)} + v_2^{(n)}$ alors $\Omega_2(v,\mu) = v_3^{(n)} + \omega^{(n)}$.

• Sinon
$$\Omega_2(v,\mu) = \frac{v_1 + v_2 + v_3}{2}$$

Algorithme, version matricielle

$$v^{(n+1)} = M^{(n)}v^{(n)}.$$

$$M_{1} = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}, \quad M_{2} = \begin{bmatrix} -1 & 1 & 0 \\ 1 & 0 & 0 \\ -1 & 0 & 1 \end{bmatrix}, \quad M_{3} = \begin{bmatrix} -1 & 1 & 0 \\ -1 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}.$$
$$M^{(n)} = \begin{cases} M_{1} & \text{si } v_{1}^{(n)} < v_{2}^{(n)} - v_{1}^{(n)} \\ M_{2} & \text{si } v_{2}^{(n)} - v_{1}^{(n)} < v_{1}^{(n)} \\ M_{3} & \text{si } v_{3}^{(n)} - v_{1}^{(n)} < v_{1}^{(n)} \end{cases}$$

12/1

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Plan de Tribonacci

Soit α la racine réelle de $x^3 + x^2 + x - 1$.

On pose $v = (\alpha, \alpha + \alpha^2, 1)$. On a alors que

$$M_3 \nu = \begin{bmatrix} -1 & 1 & 0 \\ -1 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} \begin{pmatrix} \alpha \\ \alpha + \alpha^2 \\ 1 \end{pmatrix} = \begin{pmatrix} \alpha^2 \\ 1 - \alpha \\ \alpha \end{pmatrix} = \alpha \nu$$

Soit α la racine réelle de $x^3 + x^2 + x - 1$.

On pose $v = (\alpha, \alpha + \alpha^2, 1)$. On a alors que

$$M_3 \mathbf{v} = \begin{bmatrix} -1 & 1 & 0 \\ -1 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} \begin{pmatrix} \alpha \\ \alpha + \alpha^2 \\ 1 \end{pmatrix} = \begin{pmatrix} \alpha^2 \\ 1 - \alpha \\ \alpha \end{pmatrix} = \alpha \mathbf{v}$$

$$\Omega_2(v,0) = \alpha + \alpha^2 + \alpha^3 + \cdots = \frac{\alpha}{1-\alpha}$$

 $\mathcal{P}_n = \bigcup_{i=0}^n P_i,$ $P_n = \mathcal{P}_{n-1} + \vec{t_n},$

où t_n est l'unique vecteur de \mathbb{Z}^3 tel que $\langle t_n, v \rangle = \alpha^n$.

 \bigcirc

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─ のへで

 $\mathcal{P}_n = \bigcup_{i=0}^n P_i,$ $P_n = \mathcal{P}_{n-1} + \vec{t_n},$

où t_n est l'unique vecteur de \mathbb{Z}^3 tel que $\langle t_n, v \rangle = \alpha^n$.

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─ のへで

 $\mathcal{P}_n = \bigcup_{i=0}^n P_i,$ $P_n = \mathcal{P}_{n-1} + \vec{t_n},$

où t_n est l'unique vecteur de \mathbb{Z}^3 tel que $\langle t_n, v \rangle = \alpha^n$.

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─ のへで

 $\mathcal{P}_n = \bigcup_{i=0}^n P_i,$ $P_n = \mathcal{P}_{n-1} + \vec{t_n},$

où t_n est l'unique vecteur de \mathbb{Z}^3 tel que $\langle t_n, v \rangle = \alpha^n$.

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─ のへで

 $\begin{aligned} \mathcal{P}_n &= \bigcup_{i=0}^n P_i, \\ P_n &= \mathcal{P}_{n-1} + \vec{t_n}, \end{aligned}$

 $\mathcal{P}_n = \bigcup_{i=0}^n P_i,$ $P_n = \mathcal{P}_{n-1} + \vec{t_n},$

 $\mathcal{P}_n = \bigcup_{i=0}^n P_i,$ $P_n = \mathcal{P}_{n-1} + \vec{t_n},$

 $\begin{aligned} \mathcal{P}_n &= \bigcup_{i=0}^n P_i, \\ P_n &= \mathcal{P}_{n-1} + \vec{t_n}, \end{aligned}$

 $\begin{aligned} \mathcal{P}_n &= \bigcup_{i=0}^n P_i, \\ P_n &= \mathcal{P}_{n-1} + \vec{t_n}, \end{aligned}$

où t_n est l'unique vecteur de \mathbb{Z}^3 tel que $\langle t_n, v \rangle = \alpha^n$.

(ロ) (部) (E) (E) (E)

Construction itérative du plan de Tribonacci

On pose $P_0 = \{(0,0,0)\}$ et pour tout $n \ge 1$,

 $\mathcal{P}_n = \bigcup_{i=0}^n P_i,$

 $P_n = \mathcal{P}_{n-1} + \vec{t_n},$ où t_n est l'unique vecteur de \mathbb{Z}^3 tel que $\langle t_n, v \rangle = \alpha^n.$

Construction itérative du plan de Tribonacci

On pose $P_0 = \{(0,0,0)\}$ et pour tout $n \ge 1$,

$$\mathcal{P}_n = \bigcup_{i=0}^n P_i,$$

où t_n est l'unique vecteur

de \mathbb{Z}^3 tel que $\langle t_n, v \rangle = \alpha^n$.

<ロ> <同> <同> < 回> < 回>

Construction itérative du plan de Tribonacci

- $x \in P_n \implies \langle x, v \rangle = \alpha^n + \sum_{i=0}^{n-1} \delta_i \alpha^i$, où chaque $\delta_i \in \{0, 1\}$.
- $P_n \subset P_{n+3}$

$$\lim_{n\to\infty}\mathcal{P}_n=P\left(\left(\alpha,\alpha^2+\alpha,1\right),0,\Omega_2(\nu,0)\right).$$

$$\lim_{n\to\infty}\mathcal{P}_n=P\left(\left(\alpha,\alpha^2+\alpha,1\right),0,\Omega_2(\nu,0)\right).$$

Preuve

On a $\Omega_2(v,0) = \frac{\alpha}{1-\alpha}$.

•
$$\subset$$

 $x \in \mathcal{P}_n \implies 0 \le \langle x, v \rangle < 1 + \alpha + \alpha^2 + \cdots$

$$\lim_{n\to\infty}\mathcal{P}_n=P\left(\left(\alpha,\alpha^2+\alpha,1\right),0,\Omega_2(\nu,0)\right).$$

Preuve

On a $\Omega_2(v, 0) = \frac{\alpha}{1-\alpha}$. • \subset $x \in \mathcal{P}_n \implies 0 \le \langle x, v \rangle < 1 + \alpha + \alpha^2 + \cdots$. • \supset Dans le contexte des systèmes de numération, (Frougny, Solomyak, 1992), $\forall x \in \mathbb{Z}^3, \exists (\delta_i)_{-n \le i \le n}, \delta_i \in \{0, 1\}$ tel que $\sum_{i=-n}^n \delta_i \alpha^i = \langle x, (\alpha, \alpha + \alpha^2, 1) \rangle$.

$$\lim_{n\to\infty}\mathcal{P}_n=P\left(\left(\alpha,\alpha^2+\alpha,1\right),0,\Omega_2(\nu,0)\right).$$

Preuve

On a $\Omega_2(v, 0) = \frac{\alpha}{1-\alpha}$. • \subset $x \in \mathcal{P}_n \implies 0 \le \langle x, v \rangle < 1 + \alpha + \alpha^2 + \cdots$. • \supset Dans le contexte des systèmes de numération, (Frougny, Solomyak, 1992), $\forall x \in \mathbb{Z}^3, \exists (\delta_i)_{-n \le i \le n}, \delta_i \in \{0, 1\} \text{ tel que } \sum_{i=1}^n \delta_i \alpha^i = \langle x, (\alpha, \alpha + \alpha^2, 1) \rangle.$

i = -n

Propriétés

• Le plan construit est 2-connexe.

$$\lim_{n\to\infty}\mathcal{P}_n=P\left(\left(\alpha,\alpha^2+\alpha,1\right),0,\Omega_2(\nu,0)\right).$$

Preuve

On a $\Omega_2(v, 0) = \frac{\alpha}{1-\alpha}$. • \subset $x \in \mathcal{P}_n \implies 0 \le \langle x, v \rangle < 1 + \alpha + \alpha^2 + \cdots$. • \supset Dans le contexte des systèmes de numération, (Frougny, Solomyak, 1992), $\forall x \in \mathbb{Z}^3, \exists (\delta_i)_{-n \le i \le n}, \delta_i \in \{0, 1\}$ tel que $\sum_{i=1}^n \delta_i \alpha^i = \langle x, (\alpha, \alpha + \alpha^2, 1) \rangle$.

i = -n

- Le plan construit est 2-connexe.
- Pour tout $n \ge 0$, \mathcal{P}_n est un arbre.
Théorème

$$\lim_{n\to\infty}\mathcal{P}_n=P\left(\left(\alpha,\alpha^2+\alpha,1\right),0,\Omega_2(\nu,0)\right).$$

Preuve

On a $\Omega_2(v, 0) = \frac{\alpha}{1-\alpha}$. • \subset $x \in \mathcal{P}_n \implies 0 \le \langle x, v \rangle < 1 + \alpha + \alpha^2 + \cdots$. • \supset Dans le contexte des systèmes de numération, (Frougny, Solomyak, 1992), $\forall x \in \mathbb{Z}^3, \exists (\delta_i)_{-n \le i \le n}, \delta_i \in \{0, 1\}$ tel que $\sum_{i=1}^n \delta_i \alpha^i = \langle x, (\alpha, \alpha + \alpha^2, 1) \rangle$.

i = -n

Propriétés

- Le plan construit est 2-connexe.
- Pour tout $n \ge 0$, \mathcal{P}_n est un arbre.
- Pour tout $n \ge 0$, \mathcal{P}_n est centrosymétrique.

Définition

Un ensemble $S \subset \mathbb{R}^d$ est dit *centrosymétrique* de centre *c* si

$$c+x\in S\implies c-x\in S.$$

Définition

Un ensemble $S \subset \mathbb{R}^d$ est dit *centrosymétrique* de centre *c* si

$$c+x\in S\implies c-x\in S.$$

Définition

Un ensemble $S \subset \mathbb{R}^d$ est dit *centrosymétrique* de centre *c* si

$$c+x\in S\implies c-x\in S.$$

aaabaabaaaa

Construction par translation et union

◆□ → ◆□ → ◆三 → ◆三 → ◆ ● ◆ ◆ ◆ ◆

18/1

Étant donné un vecteur $v \in \mathbb{R}^3_+$ avec $v_1 \leq v_2 \leq v_3$, on a

$$v^{(n+1)} = M^{(n)}v^{(n)},$$

$$M_1 = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}, M_2 = \begin{bmatrix} -1 & 1 & 0 \\ 1 & 0 & 0 \\ -1 & 0 & 1 \end{bmatrix}, M_3 = \begin{bmatrix} -1 & 1 & 0 \\ -1 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}.$$

On pose $\mathcal{M}_0 = \mathit{Id}$, pour tout $\mathit{n} \geq 1$,

$$\mathcal{M}_n = M^{(n-1)} \mathcal{M}_{(n-1)}$$
 et $\vec{t_n} = (1,0,0) \mathcal{M}^n$.

On pose $P_0 = \{(0,0,0)\}$ et pour tout $n \ge 1$,

$$\mathcal{P}_n = \bigcup_{i=0}^n P_i,$$
$$P_n = \mathcal{P}_{n-1} + \vec{t_n},$$

19/1

 $\begin{array}{l} \mathsf{Gris}: \mathcal{P}_{n-1} \setminus \left(\mathcal{P}_{n-1} + \vec{t_n} \right) \\ \mathsf{Jaune}: \mathcal{P}_{n-1} \cap \left(\mathcal{P}_{n-1} + \vec{t_n} \right) \\ \mathsf{Bleu}: \left(\mathcal{P}_{n-1} + \vec{t_n} \right) \setminus \mathcal{P}_{n-1} \end{array}$

 $\begin{array}{l} \mathsf{Gris}: \mathcal{P}_{n-1} \setminus (\mathcal{P}_{n-1} + \vec{t_n}) \\ \mathsf{Jaune}: \mathcal{P}_{n-1} \cap (\mathcal{P}_{n-1} + \vec{t_n}) \\ \mathsf{Bleu}: (\mathcal{P}_{n-1} + \vec{t_n}) \setminus \mathcal{P}_{n-1} \end{array}$

 $\begin{array}{l} \mathsf{Gris}: \mathcal{P}_{n-1} \setminus (\mathcal{P}_{n-1} + \vec{t_n}) \\ \mathsf{Jaune}: \mathcal{P}_{n-1} \cap (\mathcal{P}_{n-1} + \vec{t_n}) \\ \mathsf{Bleu}: (\mathcal{P}_{n-1} + \vec{t_n}) \setminus \mathcal{P}_{n-1} \end{array}$

 $\begin{array}{l} \mathsf{Gris}: \mathcal{P}_{n-1} \setminus (\mathcal{P}_{n-1} + \vec{t_n}) \\ \mathsf{Jaune}: \mathcal{P}_{n-1} \cap (\mathcal{P}_{n-1} + \vec{t_n}) \\ \mathsf{Bleu}: (\mathcal{P}_{n-1} + \vec{t_n}) \setminus \mathcal{P}_{n-1} \end{array}$

 $\begin{array}{l} \mathsf{Gris}: \mathcal{P}_{n-1} \setminus (\mathcal{P}_{n-1} + \vec{t_n}) \\ \mathsf{Jaune}: \mathcal{P}_{n-1} \cap (\mathcal{P}_{n-1} + \vec{t_n}) \\ \mathsf{Bleu}: (\mathcal{P}_{n-1} + \vec{t_n}) \setminus \mathcal{P}_{n-1} \end{array}$

 $\begin{array}{l} \mathsf{Gris}: \mathcal{P}_{n-1} \setminus (\mathcal{P}_{n-1} + \vec{t_n}) \\ \mathsf{Jaune}: \mathcal{P}_{n-1} \cap (\mathcal{P}_{n-1} + \vec{t_n}) \\ \mathsf{Bleu}: (\mathcal{P}_{n-1} + \vec{t_n}) \setminus \mathcal{P}_{n-1} \end{array}$

Rouge : composante 2-connexe de (1, 0, 0). Vert : composante 2-connexe de (0, 1, 0). Bleu : composante 2-connexe de (0, 0, 1).

Rouge : composante 2-connexe de (1, 0, 0). Vert : composante 2-connexe de (0, 1, 0). Bleu : composante 2-connexe de (0, 0, 1).

Rouge : composante 2-connexe de (1, 0, 0). Vert : composante 2-connexe de (0, 1, 0). Bleu : composante 2-connexe de (0, 0, 1).

Rouge : composante 2-connexe de (1, 0, 0). Vert : composante 2-connexe de (0, 1, 0). Bleu : composante 2-connexe de (0, 0, 1).

Construction par substitutions généralisées

 $\begin{array}{ccc} \sigma: & 2 \longrightarrow 13 \\ & 3 \longrightarrow 1 \end{array}$

メロト メポト メヨト メヨト 二日 22 / 1 Let $\mathcal{A}_d = \{1, 2, \dots, d\}$ and (e_1, e_2, \dots, e_d) be the canonical base of \mathbb{R}^d . We consider \mathfrak{F} be the vector space of mappings from $\mathbb{Z}^d \times \mathcal{A}_d$ to \mathbb{R} that takes everywhere zero value except for a finite set.

Let $\mathcal{A}_d = \{1, 2, \dots, d\}$ and (e_1, e_2, \dots, e_d) be the canonical base of \mathbb{R}^d . We consider \mathfrak{F} be the vector space of mappings from $\mathbb{Z}^d \times \mathcal{A}_d$ to \mathbb{R} that takes everywhere zero value except for a finite set.

Let $[\vec{x}, i]$ be the element of \mathfrak{F} that takes value 1 at (\vec{x}, i) and 0 elsewhere.

$$\pi_d: \mathcal{A}_d^* \longrightarrow \mathfrak{F}$$
 $\pi_d(w) = \sum_{w = p \cdot i \cdot s} [\vec{p}, i]$

Let $\mathcal{A}_d = \{1, 2, \dots, d\}$ and (e_1, e_2, \dots, e_d) be the canonical base of \mathbb{R}^d . We consider \mathfrak{F} be the vector space of mappings from $\mathbb{Z}^d \times \mathcal{A}_d$ to \mathbb{R} that takes everywhere zero value except for a finite set.

Let $[\vec{x}, i]$ be the element of \mathfrak{F} that takes value 1 at (\vec{x}, i) and 0 elsewhere.

The 1-dimensional geometric realization $E_1(\sigma)$ of a word morphism σ is the linear mapping defined on \mathfrak{F} such that :

The 1-dimensional geometric realization $E_1(\sigma)$ of a word morphism σ is the linear mapping defined on \mathfrak{F} such that :

◆□▶ ◆□▶ ★ 臣▶ ★ 臣▶ 三臣 - のへで

We consider \mathfrak{F}^* the dual space of \mathfrak{F} and the linear form :

$$\langle [\vec{y}, j], [\vec{x}, i]^* \rangle \stackrel{\text{def.}}{=} \begin{cases} 1 \text{ if } \vec{x} = \vec{y} \text{ and } i = j, \\ 0 \text{ otherwise.} \end{cases}$$

The dual operator E_1^* of E_1 is given by

$$\langle E_1(\sigma)[\vec{y},j], [\vec{x},i]^* \rangle = \langle [\vec{y},j], E_1^*(\sigma)[\vec{x},i]^* \rangle.$$

In the case where M_{σ} is unimodular

$$E_1^*(\sigma)[ec{x}, i]^* := \sum_{j \in \mathcal{A}} \sum_{\substack{ui ext{ prefix of } \sigma(j)}} \left[M_\sigma^{-1}\left(ec{x} - ec{u}
ight), j
ight]^*.$$

◆□ → ◆□ → ◆三 → ▲□ → ◆○ ◆

25 / 1

Geometrical representation of \mathfrak{F}^*

We represent an element $[\vec{x}, i]^*$ as :

$$[ec{x}, i]^* \longrightarrow \{ec{x} + e_i + \sum_{i \neq j} \lambda e_j \, | \, \lambda \in [0, 1] \}.$$

Geometrical representation of \mathfrak{F}^*

We represent an element $[\vec{x}, i]^*$ as :

$$[\vec{x}, i]^* \longrightarrow \{ \vec{x} + e_i + \sum_{i \neq j} \lambda e_j \mid \lambda \in [0, 1] \}.$$

Examples :

• *d* = 2

Geometrical representation of \mathfrak{F}^*

We represent an element $[\vec{x}, i]^*$ as :

$$[\vec{x}, i]^* \longrightarrow \{ \vec{x} + e_i + \sum_{i \neq j} \lambda e_j \mid \lambda \in [0, 1] \}.$$

26 / 1

Soit
$$\sigma : \begin{cases} 1 \mapsto 12, \\ 2 \mapsto 13, \\ 3 \mapsto 1 \end{cases}$$

 $E_1^*(\sigma)([x,1]^*) = M_{\sigma}^{-1}x + \{[(1,0,-1),1]^* + [(0,1,-2),2]^* + [(0,0,0),3]^*\}$
 $E_1^*(\sigma)([x,2]^*) = M_{\sigma}^{-1}x + \{[(0,0,0),1]^*\}$
 $E_1^*(\sigma)([x,3]^*) = M_{\sigma}^{-1}x + \{[(0,0,0),2]^*\}$

29 / 1

Theorem (Arnoux, Ito, 2001)

Soit σ un morphisme primitif et unimodulaire, alors

$$E_1^*(\sigma)(\mathfrak{G}_{\vec{v}})=\mathfrak{G}_{{}^tM_\sigma\vec{v}}$$

De plus, deux éléments distincts $(\vec{x}, e_i^*), (\vec{y}, e_i^*)$ ont des images disjointes par $E_1^*(\sigma)$.

Theorem (Arnoux, Ito, 2001)

Soit σ un morphisme primitif et unimodulaire, alors

$$E_1^*(\sigma)(\mathfrak{G}_{\vec{v}}) = \mathfrak{G}_{t_{M_{\sigma}\vec{v}}}$$

De plus, deux éléments distincts $(\vec{x}, e_i^*), (\vec{y}, e_i^*)$ ont des images disjointes par $E_1^*(\sigma)$.

• $P \subset \mathfrak{G}_{\vec{v}} \implies E_1^*(\sigma)(P) \subset \mathfrak{G}_{t_{M_{\sigma}\vec{v}}}.$

Theorem (Arnoux, Ito, 2001)

Soit σ un morphisme primitif et unimodulaire, alors

$$E_1^*(\sigma)(\mathfrak{G}_{\vec{v}}) = \mathfrak{G}_{t_{M_\sigma\vec{v}}}$$

De plus, deux éléments distincts $(\vec{x}, e_i^*), (\vec{y}, e_i^*)$ ont des images disjointes par $E_1^*(\sigma)$.

•
$$P \subset \mathfrak{G}_{\vec{v}} \implies E_1^*(\sigma)(P) \subset \mathfrak{G}_{t_{M_\sigma}\vec{v}}.$$

• Pour tout $\vec{v} \in \mathbb{R}^3_+$ on a $\bigcirc \subset \mathfrak{G}_{\vec{v}}$.

Theorem (Arnoux, Ito, 2001)

Soit σ un morphisme primitif et unimodulaire, alors

$$E_1^*(\sigma)(\mathfrak{G}_{\vec{v}}) = \mathfrak{G}_{t_{M_\sigma\vec{v}}}$$

De plus, deux éléments distincts $(\vec{x}, e_i^*), (\vec{y}, e_i^*)$ ont des images disjointes par $E_1^*(\sigma)$.

•
$$P \subset \mathfrak{G}_{\vec{v}} \implies E_1^*(\sigma)(P) \subset \mathfrak{G}_{{}^tM_\sigma\vec{v}}.$$

• Pour tout
$$\vec{v} \in \mathbb{R}^3_+$$
 on a $\bigcirc \subset \mathfrak{G}_{\vec{v}}$.

Question

Étant donné un vecteur \vec{v} , comment générer $(\sigma_i)_{i\geq 0}$ telle que chaque M_{σ_i} soit primitif, unimodulaire et

$$\lim_{n\to\infty}{}^tM_{\sigma_n}{}^tM_{\sigma_{n-1}}\cdots{}^tM_{\sigma_0}(0,0,1)=\vec{v}.$$

Computation of $[z_0; z_1, z_2, ...]$ from $\alpha = b/a$.

Computation of $[z_0; z_1, z_2, ...]$ from $\alpha = b/a$.

• Let $u_0 = b$ and $u_1 = a$,

• For
$$i \ge 0$$
, (while $u_{i+1} > 0$)
let $z_i = \left\lfloor \frac{u_i}{u_{i+1}} \right\rfloor$ and set $u_{i+2} = u_i - z_i u_{i+1}$.

Computation of $[z_0; z_1, z_2, ...]$ from $\alpha = b/a$.

Let u₀ = b and u₁ = a,
 For i ≥ 0, (while u_{i+1} > 0)

let
$$z_i = \left\lfloor \frac{u_i}{u_{i+1}} \right\rfloor$$
 and set $u_{i+2} = u_i - z_i u_{i+1}$.

First steps :

$$u_2 = u_0 - \left\lfloor \frac{u_0}{u_1} \right\rfloor u_1,$$
$$u_3 = u_1 - \left\lfloor \frac{u_1}{u_2} \right\rfloor u_2,$$

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 - のへ⊙

Computation of $[z_0; z_1, z_2, \dots]$ from $\alpha = b/a = b_0/a_0$.

$$\begin{bmatrix} a_{n+1} \\ b_{n+1} \end{bmatrix} = \begin{bmatrix} -z_n & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} a_n \\ b_n \end{bmatrix} \text{ where } z_n = \begin{bmatrix} \underline{b_n} \\ a_n \end{bmatrix}$$

Computation of $[z_0; z_1, z_2, ...]$ from $\alpha = b/a = b_0/a_0$.

$$\begin{bmatrix} a_{n+1} \\ b_{n+1} \end{bmatrix} = \begin{bmatrix} -z_n & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} a_n \\ b_n \end{bmatrix} \text{ where } z_n = \begin{bmatrix} b_n \\ a_n \end{bmatrix}$$
If $a_n \neq 0$ let $M_{z_n} = \begin{bmatrix} 0 & 1 \\ 1 & z_n \end{bmatrix}$, otherwise $M_n = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$.

Computation of $[z_0; z_1, z_2, ...]$ from $\alpha = b/a = b_0/a_0$.

$$\begin{bmatrix} a_{n+1} \\ b_{n+1} \end{bmatrix} = \underbrace{\begin{bmatrix} -z_n & 1 \\ 1 & 0 \end{bmatrix}}_{M_{z_n}^{-1}} \begin{bmatrix} a_n \\ b_n \end{bmatrix} \text{ where } z_n = \begin{bmatrix} b_n \\ a_n \end{bmatrix}$$
If $a_n \neq 0$ let $M_{z_n} = \begin{bmatrix} 0 & 1 \\ 1 & z_n \end{bmatrix}$, otherwise $M_n = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$.
$$\begin{bmatrix} a \\ b \end{bmatrix} = M_{z_1} M_{z_2} \cdots M_{z_n} \begin{bmatrix} a_n \\ b_n \end{bmatrix}$$

< □ > < ⑦ > < 言 > < 言 > こ ● ○ Q () 32/1 Computation of $[z_0; z_1, z_2, ...]$ from $\alpha = b/a = b_0/a_0$.

$$\begin{bmatrix} a_{n+1} \\ b_{n+1} \end{bmatrix} = \underbrace{\begin{bmatrix} -z_n & 1 \\ 1 & 0 \end{bmatrix}}_{M_{z_n}^{-1}} \begin{bmatrix} a_n \\ b_n \end{bmatrix} \text{ where } z_n = \begin{bmatrix} \frac{b_n}{a_n} \end{bmatrix}$$

If $a_n \neq 0$ let $M_{z_n} = \begin{bmatrix} 0 & 1 \\ 1 & z_n \end{bmatrix}$, otherwise $M_n = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$.
$$\begin{bmatrix} a \\ b \end{bmatrix} = M_{z_1}M_{z_2}\cdots M_{z_n} \begin{bmatrix} a_n \\ b_n \end{bmatrix}$$
$$\begin{bmatrix} q_n \\ p_n \end{bmatrix} = M_{z_1}M_{z_2}\cdots M_{z_n} \begin{bmatrix} 0 \\ 1 \end{bmatrix} \text{ where } \frac{p_n}{q_n} = [z_0; z_1, z_2, \dots, z_n]$$

< □ > < ⑦ > < 言 > < 言 > こ ● ○ Q () 32/1 Computation of $[z_0; z_1, z_2, \dots]$ from $\alpha = b/a = b_0/a_0$.

$$\begin{bmatrix} a_{n+1} \\ b_{n+1} \end{bmatrix} = \underbrace{\begin{bmatrix} -z_n & 1 \\ 1 & 0 \end{bmatrix}}_{M_{z_n}^{-1}} \begin{bmatrix} a_n \\ b_n \end{bmatrix} \text{ where } z_n = \begin{bmatrix} \frac{b_n}{a_n} \end{bmatrix}$$
If $a_n \neq 0$ let $M_{z_n} = \begin{bmatrix} 0 & 1 \\ 1 & z_n \end{bmatrix}$, otherwise $M_n = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$.
$$\begin{bmatrix} a \\ b \end{bmatrix} = M_{z_1}M_{z_2}\cdots M_{z_n} \begin{bmatrix} a_n \\ b_n \end{bmatrix}$$

$$\begin{bmatrix} q_n \\ p_n \end{bmatrix} = M_{z_1}M_{z_2}\cdots M_{z_n} \begin{bmatrix} 0 \\ 1 \end{bmatrix} \text{ where } \frac{p_n}{q_n} = [z_0; z_1, z_2, \dots, z_n]$$

$$\begin{bmatrix} a \\ b \end{bmatrix} = \lim_{n \to \infty} M_{z_1}M_{z_2}\cdots M_{z_n} \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

< □ > < @ > < 言 > < 言 > 言 の Q (~ 32/1

$$(a, b) = (\pi, \sqrt{3}), \sqrt{3}/\pi = [0; 1, 1, 4, 2, 1, 2, 3, 7, 3, \dots],$$

 $\begin{array}{l} E_1(\tau_0) \circ E_1(\tau_1) \circ E_1(\tau_1) \circ E_1(\tau_4) \circ E_1(\tau_2) \circ E_1(\tau_1)(\vec{0}, e_2) \\ E_1^*(\tau_0) \circ E_1^*(\tau_1) \circ E_1^*(\tau_1) \circ E_1^*(\tau_4) \circ E_1^*(\tau_2) \circ E_1^*(\tau_1)(\vec{0}, e_2^*) \end{array}$

$$(a,b) = (\pi,\sqrt{3}), \sqrt{3}/\pi = [0;1,1,4,2,1,2,3,7,3,\ldots],$$

 $\begin{array}{c} E_1(\tau_0) \circ E_1(\tau_1) \circ E_1(\tau_1) \circ E_1(\tau_4) \circ E_1(\tau_2) \circ E_1(\tau_1) \circ E_1(\tau_2) (\vec{0}, e_2) \\ E_1^*(\tau_0) \circ E_1^*(\tau_1) \circ E_1^*(\tau_1) \circ E_1^*(\tau_4) \circ E_1^*(\tau_2) \circ E_1^*(\tau_1) \circ E_1^*(\tau_2) (\vec{0}, e_2^*) \end{array}$

$$(a, b) = (\pi, \sqrt{3}), \sqrt{3}/\pi = [0; 1, 1, 4, 2, 1, 2, 3, 7, 3, \ldots],$$

$$\begin{split} & E_1(\tau_0) \circ E_1(\tau_1) \circ E_1(\tau_1) \circ E_1(\tau_4) \circ E_1(\tau_2) \circ E_1(\tau_1) \circ E_1(\tau_2) \circ E_1(\tau_3)(\vec{0}, e_2) \\ & E_1^*(\tau_0) \circ E_1^*(\tau_1) \circ E_1^*(\tau_1) \circ E_1^*(\tau_4) \circ E_1^*(\tau_2) \circ E_1^*(\tau_1) \circ E_1^*(\tau_2) \circ E_1^*(\tau_3)(\vec{0}, e_2^*) \end{split}$$

$$(a, b) = (\pi, \sqrt{3}), \sqrt{3}/\pi = [0; 1, 1, 4, 2, 1, 2, 3, 7, 3, \dots],$$

$$\begin{split} & E_1(\tau_0) \circ E_1(\tau_1) \circ E_1(\tau_1) \circ E_1(\tau_4) \circ E_1(\tau_2) \circ E_1(\tau_1) \circ E_1(\tau_2) \circ E_1(\tau_3) \circ E_1(\tau_7)(\vec{0}, e_2) \\ & E_1^*(\tau_0) \circ E_1^*(\tau_1) \circ E_1^*(\tau_1) \circ E_1^*(\tau_4) \circ E_1^*(\tau_2) \circ E_1^*(\tau_1) \circ E_1^*(\tau_2) \circ E_1^*(\tau_3) \circ E_1^*(\tau_7)(\vec{0}, e_2^*) \end{split}$$

$$(a, b) = (\pi, \sqrt{3}), \sqrt{3}/\pi = [0; 1, 1, 4, 2, 1, 2, 3, 7, 3, \dots],$$

$$\begin{split} E_1(\tau_0) \circ E_1(\tau_1) \circ E_1(\tau_1) \circ E_1(\tau_4) \circ E_1(\tau_2) \circ E_1(\tau_1) \circ E_1(\tau_2) \circ E_1(\tau_3) \circ E_1(\tau_7) \circ E_1(\tau_3) (\vec{0}, e_2) \\ E_1^*(\tau_0) \circ E_1^*(\tau_1) \circ E_1^*(\tau_1) \circ E_1^*(\tau_4) \circ E_1^*(\tau_2) \circ E_1^*(\tau_1) \circ E_1^*(\tau_2) \circ E_1^*(\tau_3) \circ E_1^*(\tau_7) \circ E_1^*(\tau_7) (\vec{0}, e_2) \\ E_1^*(\tau_1) \circ E_1^*(\tau_1) \circ E_1^*(\tau_1) \circ E_1^*(\tau_4) \circ E_1^*(\tau_2) \circ E_1^*(\tau_1) \circ E_1^*(\tau_2) \circ E_1^*(\tau_7) \circ E_1^*(\tau_7) (\vec{0}, e_2) \\ E_1^*(\tau_1) \circ E_1^*(\tau_1) \circ E_1^*(\tau_1) \circ E_1^*(\tau_4) \circ E_1^*(\tau_2) \circ E_1^*(\tau_1) \circ E_1^*(\tau_2) \circ E_1^*(\tau_7) \circ E_1^*(\tau_7) (\vec{0}, e_2) \\ E_1^*(\tau_1) \circ E_1^*(\tau_1) \circ E_1^*(\tau_1) \circ E_1^*(\tau_2) \circ E_1^*(\tau_2)$$

Theorem (Berthé, de Luca, Reutenauer, 2007)

The geometrical representation of

$$E_1^*(\tau_{z_0}) \circ E_1^*(\tau_{z_1}) \circ \cdots \circ E_1^*(\tau_{z_n})(\vec{0}, e_2^*)$$

codes the Christoffel word of slope p_n/q_n where $q_n/p_n = [z_0; z_1, \ldots, z_n]$.

Algorithmes de fraction continues 3D

Quelques algorithes de fractions continues unimodulaires. Soit $(a,b,c)\in\mathbb{R}^3_+$ avec $a\leq b\leq c,$

• Jacobi-Perron :

$$(a,b,c)\mapsto \left(b-\left\lfloor \frac{b}{a}\right
brace, c-\left\lfloor \frac{c}{a}
ight
brace, a
ight)$$

• Brun :

$$(a, b, c) \mapsto (a, b, c - b)$$

• Poincarré :

$$(a, b, c) \mapsto (a, b - a, c - b)$$

• Selmer :

$$(a, b, c) \mapsto (a, b, c - a)$$

• Fully substractive :

$$(a, b, c) \mapsto (a, b - a, c - a)$$

◆□▶ ◆□▶ ★ 臣▶ ★ 臣▶ 三臣 - のへで

• Fully substractive :

 $(a,b,c)\mapsto (a,b-a,c-a)$

$$M_1 = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix} \quad M_2 = \begin{bmatrix} -1 & 1 & 0 \\ 1 & 0 & 0 \\ -1 & 0 & 1 \end{bmatrix} \quad M_3 = \begin{bmatrix} -1 & 1 & 0 \\ -1 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$

• Fully substractive :

 $(a, b, c) \mapsto (a, b - a, c - a)$

$$M_1 = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix} \quad M_2 = \begin{bmatrix} -1 & 1 & 0 \\ 1 & 0 & 0 \\ -1 & 0 & 1 \end{bmatrix} \quad M_3 = \begin{bmatrix} -1 & 1 & 0 \\ -1 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$

$${}^{t}M_{1}^{-1} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} {}^{t}M_{2}^{-1} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} {}^{t}M_{3}^{-1} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$
$$s_{1} := \begin{cases} 1 \mapsto 1 \\ 2 \mapsto 21 \\ 3 \mapsto 31 \end{cases} {}^{s_{2}} := \begin{cases} 1 \mapsto 2 \\ 2 \mapsto 12 \\ 3 \mapsto 32 \end{cases} {}^{s_{3}} := \begin{cases} 1 \mapsto 3 \\ 2 \mapsto 13 \\ 3 \mapsto 23 \end{cases}$$

36 / 1

Théorème d'équivalence

Étant donné un vecteur $v \in \mathbb{R}^3_+$ avec $v_1 \leq v_2 \leq v_3$, on pose $v^{(0)} = v$ et

$$v^{(n+1)} = M^{(n)}v^{(n)},$$

Théorème

Les points générés par le E_1^* de fully substractive est forment un sous-ensemble de la construction *translation* + *union*.

 $\mathcal{P}_n = \{ x \in \mathbb{Z}^3 \, | \, [x, i]^* \in E_1^*(s^{(0)}) E_1^*(s^{(1)}) \cdots E_1^*(s^{(n)}) (\bigcirc) \}$

Théorème d'équivalence

Étant donné un vecteur $v \in \mathbb{R}^3_+$ avec $v_1 \leq v_2 \leq v_3$, on pose $v^{(0)} = v$ et

$$v^{(n+1)} = M^{(n)}v^{(n)},$$

Théorème

Les points générés par le E_1^* de fully substractive est forment un sous-ensemble de la construction *translation* + *union*.

 $\mathcal{P}_n = \{ x \in \mathbb{Z}^3 \, | \, [x, i]^* \in E_1^*(s^{(0)}) E_1^*(s^{(1)}) \cdots E_1^*(s^{(n)}) (\bigcirc) \}$

Sketch de la preuve, Pour tout $i \in \{1, 2, 3\}$ on a

$$E_1^*(s_i)(\bigcirc) = \bigcirc$$

Ainsi,

$$E_{1}^{*}(s^{(0)})E_{1}^{*}(s^{(1)})\cdots E_{1}^{*}(s^{(n)})(\bigcirc) = E_{1}^{*}(s^{(0)})E_{1}^{*}(s^{(1)})\cdots E_{1}^{*}(s^{(n-1)})(\bigcirc)$$

= $E_{1}^{*}(s^{(0)})E_{1}^{*}(s^{(1)})\cdots E_{1}^{*}(s^{(n-1)})(\bigcirc) + E_{1}^{*}(s^{(0)})E_{1}^{*}(s^{(1)})\cdots E_{1}^{*}(s^{(n-1)})(\bigcirc)$

Notation : $\Sigma_i = E_1^*(s_i)$.

Théorème (Jolivet, 2012)

So it $(i_n)_{n\geq 0}$ avec chaque $i_n \in \{1, 2, 3\}$ tel que pour tout $n\geq 0$, il existe N>n avec $i_N=3$,

$$\Sigma_{i_0}\Sigma_{i_1}\cdots\Sigma_{i_n}(\bigcirc)$$

contient une boule centrée en 0 arbitrairement grande lorsque n tends vers l'infini.

Notation : $\Sigma_i = E_1^*(s_i)$.

Théorème (Jolivet, 2012)

So it $(i_n)_{n\geq 0}$ avec chaque $i_n \in \{1, 2, 3\}$ tel que pour tout $n\geq 0$, il existe N>n avec $i_N=3$,

$$\Sigma_{i_0}\Sigma_{i_1}\cdots\Sigma_{i_n}(\bigcirc)$$

contient une boule centrée en 0 arbitrairement grande lorsque n tends vers l'infini.

Sketch de la preuve

Construction par composantes connexes

39/1

Définition

• Soit $P'(v, \mu, \omega) = \{x \in \mathbb{Z}^3 | 0 \le \langle x, v \rangle + \mu \le \omega \}.$

Définition

- Soit $P'(\mathbf{v}, \mu, \omega) = \{ x \in \mathbb{Z}^3 \, | \, 0 \le \langle x, \mathbf{v} \rangle + \mu \le \omega \}.$
- On appelle $\mathcal{T}(v, h)$ la composante 2-connexe de $\vec{0}$ dans P'(v, 0, h).
- $\mathcal{B}(v,h) = \{x \in \mathcal{P}'(v,0,\Omega_2(v,0)) \setminus \mathcal{T}(v,h) \mid x \text{ est } 2\text{-voisin d'un point de } \mathcal{T}(v,h)\}.$

Définition

- Soit $P'(\mathbf{v}, \mu, \omega) = \{ \mathbf{x} \in \mathbb{Z}^3 \, | \, \mathbf{0} \le \langle \mathbf{x}, \mathbf{v} \rangle + \mu \le \omega \}.$
- On appelle $\mathcal{T}(v, h)$ la composante 2-connexe de $\vec{0}$ dans P'(v, 0, h).
- $\mathcal{B}(v,h) = \{x \in \mathcal{P}'(v,0,\Omega_2(v,0)) \setminus \mathcal{T}(v,h) \mid x \text{ est } 2\text{-voisin d'un point de } \mathcal{T}(v,h)\}.$
- $h_0 = 0$,
- $h_{i+1} = \min\{\langle X, v \rangle | X \in \mathcal{B}(v, h_i)\}$

On s'intéresse à la suite de morceaux de plans $(\mathcal{T}(v, h_i))_{i \ge 0}$.

Théorème (Berthé, 2012 (?))

$$\mathcal{T}(v,h_n) = \{x \in \mathbb{Z}^3 \mid [x,i]^* \in E_1^*(s^{(0)}) E_1^*(s^{(1)}) \cdots E_1^*(s^{(n)}) (\bigcirc) \}$$

MERCI !

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 - のへぐ

44 / 1