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Minimum Length Polygon

←− C

←− IC(C )

←− OC(C )

←− OC(C ) \ IC(C )◦

1 Proved to be convergent on convex shapes.
2 If aligned vertices are considered.
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Minimum Length Polygon

←− C

←− IC(C )

←− OC(C )

←− OC(C ) \ IC(C )◦

Definition

Given a digital contour C , its inner (resp. outer) contour IC(C )
(resp. OC(C )) is the erosion (resp. dilatation) of the body of I (C )
by the open unit square centrer on (0, 0).

1 Proved to be convergent on convex shapes.
2 If aligned vertices are considered.
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Minimum Length Polygon

←− C

←− IC(C )

←− OC(C )

←− OC(C ) \ IC(C )◦

Definition

The minimum length polygon of C is a subset P ∈ R2 such that,

P = arg min
A∈A, IC(C)⊆A, ∂A⊂OC(C)\IC(C)◦

Per(A)

where A is the family of simply connected compact sets of R2.

1 Proved to be convergent on convex shapes.
2 If aligned vertices are considered.
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Minimum Length Polygon

←− C

←− IC(C )

←− OC(C )

←− OC(C ) \ IC(C )◦

The MLP is a polygonal line whose vertices are centers of pixels
along the inner or the outer contour, also :

unique ;
a good length estimator1 ;
a good tangent estimator ;
characteristic of the shape’s convexity ;
reversible2.

1 Proved to be convergent on convex shapes.
2 If aligned vertices are considered.
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Computation of MLP

MLP is computable in time linear with respect of the length of C .

J.-O. Lachaud, X. Provençal, Two linear-time algorithms for
computing the minimum length polygon of a digital contour,
Discrete Applied Mathematics (DAM), 2011.
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Segmentation using deformable models

F. de Vieilleville and J.-O. Lachaud, Digital Deformable Model
Simulating Active Contours, in proc. DGCI2009, LNCS 5810,
p.203-216, 2009.
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Segmentation using deformable models

G. Damiand, A. Dupas and J.-O. Lachaud, Combining
Topological Maps, Multi-Label Simple Points, and
Minimum-Length Polygons for Efficient Digital Partition
Model, in proc. IWCIA2011, LNCS 6636, p. 208-221, 2011.
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Flip a pixel
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Reversible polygonal representation

Goal : represent a digital contour C using a polygon whose versices are
centers of pixels either on the inner contour IC(C ) or on the outer
contour OC(C ).

Definition

A grid-vector is a triplet x = ((p, q), k, δ) ∈ N2 × N× B. where

gcd(p, q) = 1, q/p is the slope of x (with 1/0 =∞),

k ≥ 1 is its number of repetitions

the boolean δ indicates if x has one endpoint on the inner contour
and one on the outer.

Notation : ((p, q), k, δ) =


(p, q)k if δ is false,

(̃p, q)k otherwise.
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Reversible polygonal representation

Geometric interpretation of grid-vectors.

Definition

A context is an ordered pair of letters (a, b) among
{(0, 1), (1, 2), (2, 3), (3, 0), (0, 3), (3, 2), (2, 1), (1, 0)}.

Given a context (a, b), a grid-vectors defines the following vector
as follow :

(a,b)−−−−→
(p, q)k = k(p

−→
a + q

−→
b ),

(a,b)−−−−→
(̃p, q)k = k(p

−→
b + q

−→
a ).

2 0

3

1

(3, 2)1 (̃2, 3)1 (̃3, 2)1 (3, 2)1

Illustration of grid-segments using the letters (0, 1).
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Reversible polygonal representation

Operators :
σ+(a, b) = (b, a) : a turn toward the interior,
σ−(a, b) = (b, a) : a turn toward the exterior,

with the convention 0 = 2, 1 = 3, 2 = 0, 3 = 1.

Grid-curve : Γ = [l0, l1, . . . , ln−1] where each li is either a
grid-vector or one of the operators σ−, σ+.

2 0

3

1

[(2, 3)︸ ︷︷ ︸
(0, 1)

, σ+︸︷︷︸
(0, 1)
↓

(3, 0)

, (2, 3)︸ ︷︷ ︸
(3, 0)

] [(2, 3)︸ ︷︷ ︸
(0, 1)

, σ−︸︷︷︸
(0, 1)
↓

(1, 2)

, (2, 3)︸ ︷︷ ︸
(1, 2)

]
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Reversible polygonal representation

Notations :
(a,b)−→
σ− =

(a,b)−→
σ+ = (0, 0).

Let x = ((p, q), k , δ), x(a, b) =


(b, a) if δ is true,

(a, b) otherwise.

From grid-curves to polygons.
A grid-curve Γ = [l0, l1, . . . , ln−1], a context (a0, b0) and a start
point P0 define a polygonal curve PΓ = [P0,P1, . . . ,Pn] as follow :

Pi+1 = Pi +

(ai ,bi )−→
li and (ai+1, bi+1) = li (ai , bi ).

By fixing the first point on the inside or outside polygon, a discrete
contour is defined unambiguously.
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Reversible polygonal representation

Some words about Christoffel words.

The standard factorization of a Christoffel word w is the only
factorization w = uv where u and v are both Christoffel words.
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Reversible polygonal representation

0 0

0

0

0

0

0

1

1

1

1

1
α = [z0; z1, z2, . . . ]

= z0 +
1

z1 +
1

z2 +
1

z3 + . . .

The Christoffel word cn of slope [z0; z1, z2, . . . , zn] is given
recursively by :

cn =


c2m−2c

z2m
2m−1 if n = 2m,

c
z2m+1

2m c2m−1 if n = 2m + 1.
where c−1 = 2, and c−2 = 1,
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Reversible polygonal representation

Let C(a,b)
q/p be the Christoffel word of slope q/p over the alphabet (a, b).

A grid-curve Γ = [l0, l1, . . . , ln−1] defines a digital contour by gluing all
F(ai ,bi )(li ) defined as follow :

F(a,b)

(
(p, q)k

)
=

(
C(a,b)
q/p

)k
, F(a,b) (σ−) = b,

F(a,b)

(
(̃p, q)k

)
= abF(b,a)

(
(p, q)k

)
, F(a,b) (σ+) = a.

The interpixel path F (Γ) is obtained from by removing cancellations that
are factors of the form aa.
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Not unique

Γ = [(3, 2), σ+, (3, 2)],

F(0,1)(Γ) = F(0,1) ((3, 2)) · F(0,1)

(
σ+
)
· F(3,0) ((3, 2))

= 00101 · 0 · 33030

Γ = [(3, 2), σ−, (3, 2)],

F(0,1)(Γ) = F(0,1) ((3, 2)) · F(0,1)

(
σ−
)
· F(1,2) ((3, 2))

= 00101 · 3 · 11212

Γ = [(̃3, 2), (3, 2)],

F(0,1)(Γ) = F(0,1)

(
(̃3, 2)

)
· F(1,0) ((3, 2))

= 03 · 11010 · 11010
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Reversible polygonal representation

F(0,1)

((
(1, 2), 2, false

))
= (011)2,

F(0,1)

((
(1, 2), 1, true

))
= 03 · 100,

F(1,0)

((
(3, 1), 1, true

))
= 12 · 0001,

F(0,1)

((
(1, 0), 2, false

))
= 02,

F(0,1)

(
σ+
)

= 0,
F(3,0)

((
(3, 2), 1, true

))
= 32 · 00303,

F(0,3)

(
σ−
)

= 1,
F(3,2)

((
(2, 1), 1, false

))
= 332,

F(3,2)

((
(2, 1), 1, true

))
= 30 · 223,

w = 011011 · 0��31 00 · 1��20 001 · 00 · 0 · 3��20 030��31 332 · 3��02 23,
= 011011 · 000 · 1001 · 00 · 0 · 3030 · 3 · 32 · 323.

Definition

Two grid-curves Γ and Γ′ are equivalent, if they define the same digital contour
and ends in the same orientation.

The MLP of the digital contour C is the shortest grid-curve in the equivalence
class defined by C .
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Relative orientation of grid-segements

Notation

Given x = ((p, q), k, δx) and y = ((r , s), l , δy ),

x ⊗ y =

{
ps − qr if δy is false,
pr − qs if δy is true.

Three cases

x ⊗ y = 0 x ⊗ y < 0 x ⊗ y > 0

[(3, 2), (3, 2)]

[(3, 2), (3, 2)] [(2, 3), (2, 1)] [(̃1, 3), (̃2, 3)] [(3, 1), (2, 3)] [(̃3, 2), (̃2, 1)]
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Merge case : x ⊗ y = 1

Let x = ((p, q), k, δx) and y = ((r , s), l , δy ) with

x ⊗ y = 1,
δy = false and min(k, l) = 1

or
δy = true and l = 1

then

[x , y ] ≡ [z] where z =

{
((kp + lr , kq + ls), 1, δx) if δy = false.
((kp + ls, kq + lr), 1,¬δx) otherwise.

[(2, 1)2, (1, 1)] [(2, 1), (1, 1)2] [(1, 1)2, (̃2, 1)] [(̃2, 1)2, (1, 1)]
l l l l

[(5, 3)] [(4, 3)] [(̃4, 3)] [(̃5, 3)]
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Split and merge case : x ⊗ y > 1

(8, 3)⊗ (2, 1)3 = 2.

[(8, 3), (2, 1)3]
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Split and merge case : x ⊗ y > 1

(8, 3)⊗ (2, 1)3 = 2.

[(8, 3), (2, 1)3] ≡ [(̃2, 5), (̃3, 1), (2, 1)3]

18 / 24



Split and merge case : x ⊗ y > 1

(8, 3)⊗ (2, 1)3 = 2.

[(8, 3), (2, 1)3] ≡ [(̃2, 5), (1, 2), (̃1, 0), (2, 1)3]

18 / 24



Split and merge case : x ⊗ y > 1

(8, 3)⊗ (2, 1)3 = 2.

[(8, 3), (2, 1)3] ≡ [(̃2, 5), (1, 2), (̃1, 0), (2, 1), (2, 1)2]

18 / 24



Split and merge case : x ⊗ y > 1

(8, 3)⊗ (2, 1)3 = 2.

[(8, 3), (2, 1)3] ≡ [(̃2, 5), (1, 2), (̃1, 0), (̃1, 1), (̃1, 0), (2, 1)2]

18 / 24



Split and merge case : x ⊗ y > 1

(8, 3)⊗ (2, 1)3 = 2.

[(8, 3), (2, 1)3] ≡ [(̃2, 5), (1, 2), (̃1, 0), (̃1, 0), (0, 1), (̃1, 0), (2, 1)2]

18 / 24



Split and merge case : x ⊗ y > 1
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Split and merge case : x ⊗ y > 1

(8, 3)⊗ (2, 1)3 = 2.

[(8, 3), (2, 1)3] ≡ [(̃2, 5), (1, 2)2, (̃5, 2)]
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Split and merge case : x ⊗ y > 1

(8, 3)⊗ (2, 1)3 = 2.

[(8, 3), (2, 1)3] ≡ [(̃2, 5), (̃9, 4)]
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How to split ?

Notation

Let x = ((p, q), 1, false) and q/p = [u0; u1, . . . , un].

qi/pi = [u0; u1, . . . , ui ],

xi = ((pi , qi ), 1, false),

x−1 = ((0, 1), 1, false),

x−2 = ((1, 0), 1, false).

Definition

The basic splitting of the grid-vector xn is the grid-curve :

s(xn) =


[x2m−2, x

u2m
2m−1] if n = 2m,

[x
u2m+1
2m , x2m−1] if n = 2m+1,

A grid-vector and it’s basic splittings both define the same interpixel path.

s(x) = [y , z] =⇒ y ⊗ z = 1.
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How to split ?
0

1
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0

1

1

2

1

1

3

1

2

2

3

3

2

3

1

2

5

3

5

3

4

5

2

4

1

5

3

4

3

1

4

5

7

5/7 = [0; 1, 2, 2],

2/3 = [0; 1, 2],

1/1 = [0; 1]

[(7, 5)] ≡ [(3, 2)2, (1, 1)]

≡ [(̃1, 1), (2, 3), (̃3, 2)]
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Flip a pixel

[(̃3, 8), (̃2, 1)3]

≡ [(̃1, 2), (1, 3), (1, 3), (̃2, 1)3]

6≡ [(̃1, 2), (̃3, 1), (̃1, 3), (̃2, 1)3] ≡ [(5, 2), (̃1, 3), (̃2, 1)3]

1 Split grid-segments until one ends exactly on the pixel to flip. Let
x = ((p, q), 1, δx) be the grid segment right before and y = ((r , s), 1, δy )
be the grid-vector right after.

2 Replace x by ((q, p), 1,¬δx).

3 Replace y by ((r , s), 1,¬δy ).
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Flip a pixel on a flat part

[(2, 1), (1, 0)6, σ+, (1, 2)]

How to simplify σ− ?

Cancellation : [σ−, σ+] ≡ [σ+, σ−] ≡ [ ]

Split the grid-edges in order to have a local part build only with

{σ+, σ−, (1, 0), (0, 1), (̃1, 0), (̃0, 1)}. Operators σ− are then simplify using
local rules such as :

[(1, 0), σ−, (1, 0), σ+] ≡ [(1, 1)] and [σ−, (1, 0)k , σ+] ≡ [(0, 1)k ]
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Flip a pixel on a flat part
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Flip a pixel on a flat part

[(2, 1), (1, 0)2, (̃0, 1), (̃1, 0)3, σ+, (1, 2)]
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Flip a pixel on a flat part

[(2, 1), (1, 0)3, σ−, (1, 0), σ+, σ+, (1, 0), σ−︸ ︷︷ ︸
bumb
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Main result

Proposition

A grid-curve defining a digital contour may be simplified to a MLP
using local rules.

Proposition

Given a grid-curve that is the MLP of a digital contour, this
contour may be modified by adding or removing one pixel and its
MLP updated in time sub-linear with respect to the length of the
modified part of the MLP.

Implemente in project ImaGene available at
gforge.liris.cnrs.fr/projects/imagene
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MERCI !
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