Dynamic Minimum Length Polygon

J.-O. Lachaud, X. Provençal

3 mars 2015

Minimum Length Polygon

Minimum Length Polygon

Minimum Length Polygon

Minimum Length Polygon

4 $\square>4$ 向 4 引

Minimum Length Polygon

Definition

Given a digital contour C, its inner (resp. outer) contour $\operatorname{IC}(C)$ (resp. $\mathrm{OC}(C)$) is the erosion (resp. dilatation) of the body of $I(C)$ by the open unit square centrer on $(0,0)$.

Minimum Length Polygon

Definition

Given a digital contour C, its inner (resp. outer) contour $\operatorname{IC}(C)$ (resp. $\mathrm{OC}(C)$) is the erosion (resp. dilatation) of the body of $I(C)$ by the open unit square centrer on $(0,0)$.

Minimum Length Polygon

Definition

Given a digital contour C, its inner (resp. outer) contour $\operatorname{IC}(C)$ (resp. $\mathrm{OC}(C)$) is the erosion (resp. dilatation) of the body of $I(C)$ by the open unit square centrer on $(0,0)$.

Minimum Length Polygon

Definition

The minimum length polygon of C is a subset $P \in \mathbb{R}^{2}$ such that,

$$
P=\underset{A \in \mathcal{A}, \operatorname{IC}(C) \subseteq A, \partial A \subset \mathrm{OC}(C) \backslash \operatorname{IC}(C)^{\circ}}{\arg \min } \operatorname{Per}(A)
$$

where \mathcal{A} is the family of simply connected compact sets of \mathbb{R}^{2}.

Minimum Length Polygon

The MLP is a polygonal line whose vertices are centers of pixels along the inner or the outer contour, also :

Minimum Length Polygon

The MLP is a polygonal line whose vertices are centers of pixels along the inner or the outer contour, also :

- unique

Minimum Length Polygon

The MLP is a polygonal line whose vertices are centers of pixels along the inner or the outer contour, also :

- unique;
- a good length estimator ${ }^{1}$;

[^0]
Minimum Length Polygon

The MLP is a polygonal line whose vertices are centers of pixels along the inner or the outer contour, also :

- unique;
- a good length estimator ${ }^{1}$;
- a good tangent estimator;

[^1]
Minimum Length Polygon

The MLP is a polygonal line whose vertices are centers of pixels along the inner or the outer contour, also :

- unique
- a good length estimator ${ }^{1}$;
- a good tangent estimator;
- characteristic of the shape's convexity;

[^2]
Minimum Length Polygon

The MLP is a polygonal line whose vertices are centers of pixels along the inner or the outer contour, also :

- unique
- a good length estimator ${ }^{1}$;
- a good tangent estimator;
- characteristic of the shape's convexity;
- reversible ${ }^{2}$.
${ }_{2}^{1}$ Proved to be convergent on convex shapes.
2 If aligned vertices are considered.

Computation of MLP

MLP is computable in time linear with respect of the length of C.

- J.-O. Lachaud, X. Provençal, Two linear-time algorithms for computing the minimum length polygon of a digital contour, Discrete Applied Mathematics (DAM), 2011.

Segmentation using deformable models

Fig. 4. Example of the minimization process using the Greedy1 algorithm. The gradient is computed with the Canny-Deriche method with scale coefficient 0.2 . The input image represents a half-plane. (First row) Initialisation of the DDM. (Second row) Results of the minimisation process, the α coefficient used is equal to 0 . (Third row) Results with $\alpha=200$. (Fifth row) Results with $\alpha=300$.

- F. de Vieilleville and J.-O. Lachaud, Digital Deformable Model Simulating Active Contours, in proc. DGCI2009, LNCS 5810, p.203-216, 2009.

- G. Damiand, A. Dupas and J.-O. Lachaud, Combining Topological Maps, Multi-Label Simple Points, and Minimum-Length Polygons for Efficient Digital Partition Model, in proc. IWCIA2011, LNCS 6636, p. 208-221, 2011.

Flip a pixel

Flip a pixel

Flip a pixel

Flip a pixel

Reversible polygonal representation

Goal : represent a digital contour C using a polygon whose versices are centers of pixels either on the inner contour $\operatorname{IC}(C)$ or on the outer contour $\mathrm{OC}(C)$.

Reversible polygonal representation

Goal : represent a digital contour C using a polygon whose versices are centers of pixels either on the inner contour $\operatorname{IC}(C)$ or on the outer contour $\mathrm{OC}(C)$.

Definition

A grid-vector is a triplet $x=((p, q), k, \delta) \in \mathbb{N}^{2} \times \mathbb{N} \times \mathbb{B}$. where

- $\operatorname{gcd}(p, q)=1, q / p$ is the slope of $x($ with $1 / 0=\infty)$,
- $k \geq 1$ is its number of repetitions
- the boolean δ indicates if x has one endpoint on the inner contour and one on the outer.

Notation : $((p, q), k, \delta)=\left\{\begin{array}{l}(p, q)^{k} \text { if } \delta \text { is false, } \\ \widetilde{(p, q)^{k}} \text { otherwise. }\end{array}\right.$

Reversible polygonal representation

Geometric interpretation of grid-vectors.

Definition

A context is an ordered pair of letters (a, b) among $\{(0,1),(1,2),(2,3),(3,0),(0,3),(3,2),(2,1),(1,0)\}$.

Given a context (a, b), a grid-vectors defines the following vector as follow :

$$
\begin{array}{lc}
\frac{(a, b)}{(p, q)^{k}}=k(p \vec{a}+q \vec{b}), & 1 \\
\xrightarrow[(p, q)^{k}]{\stackrel{(a, b)}{\longrightarrow}}=k(p \vec{b}+q \vec{a}) . & 3
\end{array}
$$

Reversible polygonal representation

Geometric interpretation of grid-vectors.

Definition

A context is an ordered pair of letters (a, b) among $\{(0,1),(1,2),(2,3),(3,0),(0,3),(3,2),(2,1),(1,0)\}$.

Given a context (a, b), a grid-vectors defines the following vector as follow:

$$
\begin{array}{lc}
\frac{(a, b)}{(p, q)^{k}}=k(p \vec{a}+q \vec{b}), & 1 \\
\xrightarrow[(p, q)^{k}]{(a, b)}=k(p \vec{b}+q \vec{a}) & 2 \underset{\downarrow}{\longleftrightarrow} 0 \\
& 3
\end{array}
$$

$(3,2)^{1}$

$(3,2)^{1}$

Reversible polygonal representation

- Operators : $\sigma^{+}(a, b)=(\bar{b}, a)$: a turn toward the interior, $\sigma^{-}(a, b)=(b, \bar{a}):$ a turn toward the exterior, with the convention $\overline{0}=2, \overline{1}=3, \overline{2}=0, \overline{3}=1$.
- Grid-curve : $\Gamma=\left[l_{0}, I_{1}, \ldots, I_{n-1}\right]$ where each I_{i} is either a grid-vector or one of the operators σ^{-}, σ^{+}.

Reversible polygonal representation

Notations :
$\xrightarrow{(a, b)} \xrightarrow[\sigma^{-}]{(a, b)} \overrightarrow{\sigma^{+}}=(0,0)$.

- Let $x=((p, q), k, \delta), \quad x(a, b)=\left\{\begin{array}{l}(b, a) \text { if } \delta \text { is true }, \\ (a, b) \text { otherwise. }\end{array}\right.$

Reversible polygonal representation

Notations :

$$
\stackrel{(a, b)}{\overrightarrow{\sigma^{-}}}=\stackrel{(a, b)}{\sigma^{+}}=(0,0) .
$$

- Let $x=((p, q), k, \delta), \quad x(a, b)=\left\{\begin{array}{l}(b, a) \text { if } \delta \text { is true, } \\ (a, b) \text { otherwise. }\end{array}\right.$

Reversible polygonal representation

Notations :

$$
\stackrel{(a, b)}{\overrightarrow{\sigma^{-}}}=\stackrel{(a, b)}{\sigma^{+}}=(0,0) .
$$

$$
\text { Let } x=((p, q), k, \delta), \quad x(a, b)=\left\{\begin{array}{l}
(b, a) \text { if } \delta \text { is true } \\
(a, b) \text { otherwise }
\end{array}\right.
$$

Reversible polygonal representation

Notations:

- $\xrightarrow[\sigma^{-}]{(a, b)}=\stackrel{(a, b)}{\sigma^{+}}=(0,0)$.
- Let $x=((p, q), k, \delta), \quad x(a, b)=\left\{\begin{array}{l}(b, a) \text { if } \delta \text { is true, } \\ (a, b) \text { otherwise. }\end{array}\right.$

From grid-curves to polygons.
A grid-curve $\Gamma=\left[I_{0}, I_{1}, \ldots, I_{n-1}\right]$, a context $\left(a_{0}, b_{0}\right)$ and a start point P_{0} define a polygonal curve $P_{\Gamma}=\left[P_{0}, P_{1}, \ldots, P_{n}\right]$ in the following way :

$$
P_{i+1}=P_{i}+\stackrel{\left(a_{i}, b_{i}\right)}{\overrightarrow{l_{i}}} \quad \text { and } \quad\left(a_{i+1}, b_{i+1}\right)=l_{i}\left(a_{i}, b_{i}\right)
$$

By fixing the first point on the inside or outside polygon, a discrete contour is defined unambiguously.

Not unique

$\left[(2,3), \sigma^{+},(2,3)\right]$

$\left[(1,1), \widetilde{(3,1)}, \sigma^{-}, \widetilde{(2,1)},(1,2)\right]$

Not unique

$\left[(2,3), \sigma^{+},(2,3)\right]$

$\left[(1,1), \widetilde{(3,1)}, \sigma^{-} \widetilde{(2,1)},(1,2)\right]$

Definition

Two grid-curves Γ and Γ^{\prime} are equivalent, if they define the same digital contour and ends in the same orientation.

The MLP of the digital contour C is the shortest grid-curve in the equivalence class defined by C.

Relative orientation of grid-segements

Notation

Given $x=\left((p, q), k, \delta_{x}\right)$ and $y=\left((r, s), l, \delta_{y}\right)$,
$x \otimes y= \begin{cases}p s-q r & \text { if } \delta_{y} \text { is false, } \\ p r-q s & \text { if } \delta_{y} \text { is true } .\end{cases}$

Three cases			
$x \otimes y=0$	$x \otimes y<0$	$x \otimes y>0$	
$[(3,2),(3,2)]$			
$[(2,3),(2,1)]$	$[\widetilde{(1,3),(2,3)]}$	$[(3,1),(2,3)]$	$[\widetilde{(3,2)}, \widetilde{(2,1)]}$

Relative orientation of grid-segements

Notation

Given $x=\left((p, q), k, \delta_{x}\right)$ and $y=\left((r, s), l, \delta_{y}\right)$,
$x \otimes y= \begin{cases}p s-q r & \text { if } \delta_{y} \text { is false, } \\ p r-q s & \text { if } \delta_{y} \text { is true } .\end{cases}$

Three cases			
$x \otimes y=0$	$x \otimes y<0$	$x \otimes y>0$	
$\left[(3,2)^{2}\right]$			
$[(2,3),(2,1)]$	$[\widetilde{(1,3), 3)]}$	$[(3,1),(2,3)]$	$[\widetilde{(3,2)}, \widetilde{(2,1)]}$

Merge case : $x \otimes y=1$

Let $x=\left((p, q), k, \delta_{x}\right)$ and $y=\left((r, s), I, \delta_{y}\right)$ with

$$
x \otimes y=1
$$

$$
\begin{gathered}
\delta_{y}=\text { false and } \min (k, l)=1 \\
\text { or }
\end{gathered}
$$

$$
\delta_{y}=\text { true and } I=1
$$

then

$$
[x, y] \equiv[z] \text { where } z= \begin{cases}\left((k p+I r, k q+I s), 1, \delta_{x}\right) & \text { if } \delta_{y}=\mathrm{fal} \text { se } \\ \left((k p+I s, k q+I r), 1, \neg \delta_{x}\right) & \text { otherwise }\end{cases}
$$

$\left[(2,1)_{\underset{\imath}{2},(1,1)]}\right.$

$[(5,3)]$

$\left[(2,1),(1,1)^{2}\right]$ \downarrow

$[(4,3)]$

$\left[(1,1)^{2}, \widetilde{(2,1)}\right]$

$[\widetilde{(4,3)}]$

$\left[\widetilde{(2,1)^{2}},(1,1)\right]$

Split and merge case : $x \otimes y>1$

$(8,3) \otimes(2,1)^{3}=2$.

$\left[(8,3),(2,1)^{3}\right]$

Split and merge case : $x \otimes y>1$

$(8,3) \otimes(2,1)^{3}=2$.

$\left[(8,3),(2,1)^{3}\right] \equiv\left[\widetilde{(2,5)}, \widetilde{(3,1)},(2,1)^{3}\right]$

Split and merge case : $x \otimes y>1$

$(8,3) \otimes(2,1)^{3}=2$.

$\left[(8,3),(2,1)^{3}\right] \equiv\left[\widetilde{(2,5)},(1,2), \widetilde{(1,0)},(2,1)^{3}\right]$

Split and merge case : $x \otimes y>1$

$(8,3) \otimes(2,1)^{3}=2$.

$\left[(8,3),(2,1)^{3}\right] \equiv\left[\widetilde{(2,5)},(1,2), \widetilde{(1,0)},(2,1),(2,1)^{2}\right]$

Split and merge case : $x \otimes y>1$

$(8,3) \otimes(2,1)^{3}=2$.

$\left[(8,3),(2,1)^{3}\right] \equiv\left[\widetilde{(2,5)},(1,2), \widetilde{(1,0)}, \widetilde{(1,1)}, \widetilde{(1,0)},(2,1)^{2}\right]$

Split and merge case : $x \otimes y>1$

$(8,3) \otimes(2,1)^{3}=2$.

$\left[(8,3),(2,1)^{3}\right] \equiv\left[\widetilde{(2,5)},(1,2), \widetilde{(1,0)}, \widetilde{(1,0)},(0,1), \widetilde{(1,0)},(2,1)^{2}\right]$

Split and merge case : $x \otimes y>1$

$(8,3) \otimes(2,1)^{3}=2$.

$\left[(8,3),(2,1)^{3}\right] \equiv[\widetilde{(2,5)},(1,2),(1,1)(0,1), \widetilde{(5,2)}]$

Split and merge case : $x \otimes y>1$

$(8,3) \otimes(2,1)^{3}=2$.

$\left[(8,3),(2,1)^{3}\right] \equiv\left[\widetilde{(2,5)},(1,2)^{2}, \widetilde{(5,2)}\right]$

Split and merge case : $x \otimes y>1$

$(8,3) \otimes(2,1)^{3}=2$.

$\left[(8,3),(2,1)^{3}\right] \equiv[\widetilde{(2,5)}, \widetilde{(9,4)}]$

How to split?

Notation

$$
\begin{aligned}
& \text { Let } x=((p, q), 1, \text { false }) \text { and } q / p=\left[u_{0} ; u_{1}, \ldots, u_{n}\right] . \\
& \text { - } q_{i} / p_{i}=\left[u_{0} ; u_{1}, \ldots, u_{i}\right], \quad \text { - } x_{-1}=((0,1), 1, \text { false }), \\
& \text { - } x_{i}=\left(\left(p_{i}, q_{i}\right), 1, \text { false }\right), \quad \bullet x_{-2}=((1,0), 1, \text { false }) .
\end{aligned}
$$

Definition

The basic splitting of the grid-vector x_{n} is the grid-curve :

$$
s\left(x_{n}\right)=\left\{\begin{array}{l}
{\left[x_{2 m-2}, x_{2 m-1}^{u_{2 m}}\right] \text { if } \mathrm{n}=2 \mathrm{~m}} \\
{\left[x_{2 m}^{u_{2 m+1}}, x_{2 m-1}\right] \text { if } \mathrm{n}=2 \mathrm{~m}+1,}
\end{array}\right.
$$

A grid-vector and it's basic splittings both define the same interpixel path.

$$
s(x)=[y, z] \Longrightarrow y \otimes z=1
$$

How to split?

How to split?

How to split?

Flip a pixel

(1) Split grid-segments until one ends exactly on the pixel to flip. Let $x=\left((p, q), 1, \delta_{x}\right)$ be the grid segment right before and $y=\left((r, s), 1, \delta_{y}\right)$ be the grid-vector right after.

(1) Split grid-segments until one ends exactly on the pixel to flip. Let $x=\left((p, q), 1, \delta_{x}\right)$ be the grid segment right before and $y=\left((r, s), 1, \delta_{y}\right)$ be the grid-vector right after.
(2) Replace x by $\left((q, p), 1, \neg \delta_{x}\right)$.
(3) Replace y by $\left((r, s), 1, \neg \delta_{y}\right)$.

(1) Split grid-segments until one ends exactly on the pixel to flip. Let $x=\left((p, q), 1, \delta_{x}\right)$ be the grid segment right before and $y=\left((r, s), 1, \delta_{y}\right)$ be the grid-vector right after.
(2) Replace x by $\left((q, p), 1, \neg \delta_{x}\right)$.
(3) Replace y by $\left((r, s), 1, \neg \delta_{y}\right)$.

(1) Split grid-segments until one ends exactly on the pixel to flip. Let $x=\left((p, q), 1, \delta_{x}\right)$ be the grid segment right before and $y=\left((r, s), 1, \delta_{y}\right)$ be the grid-vector right after.
(2) Replace x by $\left((q, p), 1, \neg \delta_{x}\right)$.
(3) Replace y by $\left((r, s), 1, \neg \delta_{y}\right)$.

Flip a pixel on a flat part

$\left[(2,1),(1,0)^{6}, \sigma^{+},(1,2)\right]$

Flip a pixel on a flat part

$\left[(2,1),(1,0)^{3},(1,0)^{3}, \sigma^{+},(1,2)\right]$

Flip a pixel on a flat part

$$
\left[(2,1),(1,0)^{2}, \widetilde{(0,1)}, \widetilde{(1,0)^{3}}, \sigma^{+},(1,2)\right]
$$

Flip a pixel on a flat part

$\left[(2,1),(1,0)^{3},(1,0)^{3}, \sigma^{+},(1,2)\right]$

Flip a pixel on a flat part

$[(2,1),(1,0)^{3}, \underbrace{\sigma^{-},(1,0), \sigma^{+}, \sigma^{+},(1,0), \sigma^{-}}_{\text {bumb }}, \quad(1,0)^{3}, \sigma^{+},(1,2)]$

Flip a pixel on a flat part

$$
[(2,1),(1,0)^{3}, \underbrace{\sigma^{-},(1,0), \sigma^{+}, \sigma^{+},(1,0), \sigma^{-}}_{\text {bumb }}, \quad(1,0)^{3}, \sigma^{+},(1,2)]
$$

How to simplify σ^{-}?

Flip a pixel on a flat part

$$
[(2,1),(1,0)^{3}, \underbrace{\sigma^{-},(1,0), \sigma^{+}, \sigma^{+},(1,0), \sigma^{-}}_{\text {bumb }}, \quad(1,0)^{3}, \sigma^{+},(1,2)]
$$

How to simplify σ^{-}?

- Cancellation : $\left[\sigma^{-}, \sigma^{+}\right] \equiv\left[\sigma^{+}, \sigma^{-}\right] \equiv[]$

Flip a pixel on a flat part

$[(2,1),(1,0)^{3}, \underbrace{\sigma^{-},(1,0), \sigma^{+}, \sigma^{+},(1,0), \sigma^{-}}_{\text {bumb }}, \quad(1,0)^{3}, \sigma^{+},(1,2)]$
How to simplify σ^{-}?

- Cancellation: $\left[\sigma^{-}, \sigma^{+}\right] \equiv\left[\sigma^{+}, \sigma^{-}\right] \equiv[]$
- Split the grid-edges in order to have a local part build only with $\left\{\sigma^{+}, \sigma^{-},(1,0),(0,1),(1,0),(0,1)\right\}$. Operators σ^{-}are then simplify using local rules such as :

$$
\left[(1,0), \sigma^{-},(1,0), \sigma^{+}\right] \equiv[(1,1)] \text { and }\left[\sigma^{-},(1,0)^{k}, \sigma^{+}\right] \equiv\left[(0,1)^{k}\right]
$$

Main result

Proposition

A grid-curve defining a digital contour may be simplified to a MLP using local rules.

Main result

Proposition

A grid-curve defining a digital contour may be simplified to a MLP using local rules.

Proposition

Given a grid-curve that is the MLP of a digital contour, this contour may be modified by adding or removing one pixel and its MLP updated in time sub-linear with respect to the length of the modified part of the MLP.

Implemente in project ImaGene available at
gforge.liris.cnrs.fr/projects/imagene

C'est fini. . .

MERCI!

[^0]: ${ }^{1}$ Proved to be convergent on convex shapes.

[^1]: 1 Proved to be convergent on convex shapes.

[^2]: 1 Proved to be convergent on convex shapes.

