Génération de plans discrets par substitutions généralisées

X. Provençal

20 mai 2015

Definition (Réveillès, 1991)

The discrete plane $\mathcal{P}(a, b, c, \mu, \omega)$ is defined by

 $\mathcal{P}(\mathsf{a},\mathsf{b},\mathsf{c},\mu,\omega) = \left\{ (x,y,z) \in \mathbb{Z}^3 \, | \, 0 \leq \mathsf{a} x + \mathsf{b} y + \mathsf{c} z + \mu < \omega
ight\}.$

- μ is the translation parameter of $\mathcal{P}(a, b, c, \mu, \omega)$,
- ω is the thickness of $\mathcal{P}(a, b, c, \mu, \omega)$.
- If $\omega = |a| + |b| + |c|$ then $\mathcal{P}(a, b, c, \mu, \omega)$ is said to be standard.

Discrete plane

Generalized substitutions

Droites discrètes et mots équilibrés

Arithmetic discrete lines

Definition (Reveillès, 1991)

The discrete line $\mathcal{L}(a, b, \mu, \omega)$ is defined by

$$\mathcal{L}(\mathsf{a},\mathsf{b},\mu,\omega) = \left\{ (\mathsf{x},\mathsf{y}) \in \mathbb{Z}^2 \, | \, \mathsf{0} \leq \mathsf{a}\mathsf{x} + \mathsf{b}\mathsf{y} + \mu < \omega
ight\}.$$

- μ is the translation parameter of $\mathcal{L}(a, b, \mu, \omega)$.
- ω is the thickness of $\mathcal{L}(a, b, \mu, \omega)$.
- If $\omega = |a| + |b|$ then $\mathcal{L}(a, b, \mu, \omega)$ is said to be *standard*.

From discrete lines to words

$$\mathcal{L}(\mathsf{a},\mathsf{b},\mu,\omega) = \left\{ (\mathsf{x},\mathsf{y}) \in \mathbb{Z}^2 \, | \, \mathsf{0} \leq \mathsf{a}\mathsf{x} + \mathsf{b}\mathsf{y} + \mu < \omega
ight\}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ●臣 - のへの

From discrete lines to words

$$\mathcal{L}(\mathsf{a},\mathsf{b},\mu,\omega) = \left\{ (\mathsf{x},\mathsf{y}) \in \mathbb{Z}^2 \, | \, \mathsf{0} \leq \mathsf{a}\mathsf{x} + \mathsf{b}\mathsf{y} + \mu < \omega
ight\}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ●臣 - のへの

From discrete lines to words

$$\mathcal{L}(\mathsf{a},\mathsf{b},\mu,\omega) = \left\{ (x,y) \in \mathbb{Z}^2 \, | \, \mathsf{0} \leq \mathsf{a} x + \mathsf{b} y + \mu < \omega
ight\}.$$

 $w = 11111211112111 \cdots$

Definition (Morse and Hedlund 1940)

An infinite word *w* over a two-letter alphabet is *Sturmian* if, equivalently,

- w admits exactly n + 1 factors of length n,
- w is balanced and aperiodic,
- w codes (as in the previous slide) a standard discrete line with irrational slope $\alpha = b/a > 0$.

Definition (Morse and Hedlund 1940)

An infinite word *w* over a two-letter alphabet is *Sturmian* if, equivalently,

- w admits exactly n + 1 factors of length n,
- w is balanced and aperiodic,
- w codes (as in the previous slide) a standard discrete line with irrational slope $\alpha = b/a > 0$.

Two Sturmian words u and v have same slope iff Fact(u) = Fact(v).

イロト 不得 トイヨト イヨト 二日

A finite word $u \in \{1,2\}^*$ is called *central* if, equialently,

• *u* is *strictly bispecial*, that is 1*u*1, 1*u*2, 2*u*1 and 2*u*2 are all factors of Sturmian words.

A finite word $u \in \{1,2\}^*$ is called *central* if, equialently,

- *u* is *strictly bispecial*, that is 1*u*1, 1*u*2, 2*u*1 and 2*u*2 are all factors of Sturmian words.
- u has two periods p and q such that gcd(q, p) = 1 and |u| = p + q 2.

A finite word $u \in \{1,2\}^*$ is called *central* if, equialently,

- *u* is *strictly bispecial*, that is 1*u*1, 1*u*2, 2*u*1 and 2*u*2 are all factors of Sturmian words.
- *u* has two periods *p* and *q* such that gcd(q, p) = 1 and |u| = p + q 2.
- *u* is either a single letter repeated or it is a palindrome and there exist two palindromes *x* and *y* such that *u* = *x*12*y*.

A finite word $u \in \{1,2\}^*$ is called *central* if, equialently,

- *u* is *strictly bispecial*, that is 1*u*1, 1*u*2, 2*u*1 and 2*u*2 are all factors of Sturmian words.
- *u* has two periods *p* and *q* such that gcd(q, p) = 1 and |u| = p + q 2.
- *u* is either a single letter repeated or it is a palindrome and there exist two palindromes *x* and *y* such that *u* = *x*12*y*.

The set of Christoffel word is

 $w = \{1,2\} \cup \{1u2|u \text{ is a central word}\}.$

◆ロ▶ ◆母▶ ◆臣▶ ◆臣▶ 三臣 めんの

(日) 《母》 《母》 《日》 《日)

The standard factorization of a Christoffel word w is the only factorization w = uv where u and v are both Christoffel words.

The Christoffel word c_n of slope $[z_0; z_1, z_2, ..., z_n]$ is given recursively by :

$$c_n = \begin{cases} c_{2m-2}c_{2m-1}^{z_{2m}} \text{ if } n = 2m, \\ c_{2m}^{z_{2m+1}}c_{2m-1} \text{ if } n = 2m+1. \end{cases} \text{ where } c_{-1} = 2, \text{ and } c_{-2} = 1, \end{cases}$$

11/46

< 🗇 🕨 <

The Christoffel word c_n of slope $[z_0; z_1, z_2, ..., z_n]$ is given recursively by :

$$c_n = \begin{cases} c_{2m-2}c_{2m-1}^{z_{2m}} \text{ if } n = 2m, \\ c_{2m}^{z_{2m+1}}c_{2m-1} \text{ if } n = 2m+1. \end{cases} \text{ where } c_{-1} = 2, \text{ and } c_{-2} = 1, \end{cases}$$

 $\lim_{n\to\infty} s_n$ existe et est un mot Sturmien de pente α .

Definition

Definition

Definition

Definition

Definition

A digital shape $S \subset \mathbb{Z}^2$ is *digitally convex* if its Euclidean convex hull *E* is such that $E \cap \mathbb{Z}^2 = S$.

Theorem (Brlek, Lachaud, Reutenauer, P.)

A digital shape S is digitally convex if and only if each of its four quadrant words may be factorized as a sequence of decreasing Christoffel words. (If it exists, such a factorization is unique)

Proposition

If word $w \in \{1,2\}^*$ is factorizes as a sequence of decreasing Christoffel words $c_1^{n_1} \cdot c_2^{n_2} \cdots c_m^{n_m}$ then c_1 is the longest prefix of w that is a Christoffel word.

Proposition

If word $w \in \{1,2\}^*$ is factorizes as a sequence of decreasing Christoffel words $c_1^{n_1} \cdot c_2^{n_2} \cdots c_m^{n_m}$ then c_1 is the longest prefix of w that is a Christoffel word.

Proposition

Three words u, v, w with $|u| < |v| \le |w|$ such that u and v are Christoffel words and both are prefixes of w, then there exist $k \ge 1$ such that

$$u^k \cdot y \in Pref(v),$$

where u = xy is the standard factorization of u.

▲ロト ▲母 ▶ ▲目 ▶ ▲目 ▶ ● 目 ● のへの

 $1 \ 1 \ 1 \ 2 \ 1 \ 1 \ 2$

u		У
x	у	

・ロト ・母 ト ・目 ト ・目 ・ うへの

1 1 1 2 1 1 2

・ロト ・団 ト ・田 ト ・田 ・ うへぐ

◆ロ > ◆母 > ◆臣 > ◆臣 > ○日 ● ○ ○ ○

◆ロ > ◆母 > ◆臣 > ◆臣 > ○日 ● ○ ○ ○

◆ロ > ◆母 > ◆臣 > ◆臣 > ○日 ● ○ ○ ○

◆ロ > ◆母 > ◆臣 > ◆臣 > ○ 臣 ○ のへで

Test de convexité

w =

1 1 1 1 2 1 1 1 1.

И		у
X	у	

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Génération de droites discrètes par substitutions et mots de Christoffel

< 日 > < 同 > < 三 > < 三 >

Generation of a Sturmian word by morphisms

$$\alpha = [z_0; z_1, z_2, \dots] = z_0 + \frac{1}{z_1 + \frac{1}{z_2 + \frac{1}{z_3 + \dots}}}$$

Generation of a Sturmian word by morphisms

$$\alpha = [z_0; z_1, z_2, \dots] = z_0 + \frac{1}{z_1 + \frac{1}{z_2 + \frac{1}{z_3 + \dots}}}$$
$$\tau_n = \begin{cases} 1 \mapsto 2\\ 2 \mapsto 12^n \end{cases}$$

Generation of a Sturmian word by morphisms

$$\alpha = [z_0; z_1, z_2, \dots] = z_0 + \frac{1}{z_1 + \frac{1}{z_2 + \frac{1}{z_3 + \dots}}}$$
$$\tau_n = \begin{cases} 1 \mapsto 2\\ 2 \mapsto 12^n \end{cases}$$

For each $n \geq 0$, let $s_n = \tau_{z_0} \circ \tau_{z_1} \circ \cdots \circ \tau_{z_n}(2)$.

Sturmian word w_1 and w_2 of slope α is given by :

$$w_1 = \lim_{n \to \infty} s_{2n}$$
 and $w_2 = \lim_{n \to \infty} s_{2n+1}$.

16 / 46

◆□▶ ◆□▶ ★ 三▶ ★ 三▶ ・ 三 ・ のへで

Euclid's algorithm

Computation of $[z_0; z_1, z_2, ...]$ from $\alpha = b/a$.

Euclid's algorithm

Computation of $[z_0; z_1, z_2, ...]$ from $\alpha = b/a$.

• Let
$$u_0 = b$$
 and $u_1 = a$,

• For
$$i \ge 0$$
, (while $u_{i+1} > 0$)
let $z_i = \left\lfloor \frac{u_i}{u_{i+1}} \right\rfloor$ and set $u_{i+2} = u_i - z_i u_{i+1}$.

Euclid's algorithm

Computation of $[z_0; z_1, z_2, ...]$ from $\alpha = b/a$.

• Let
$$u_0 = b$$
 and $u_1 = a$,
• For $i \ge 0$, (while $u_{i+1} > 0$)
let $z_i = \left\lfloor \frac{u_i}{u_{i+1}} \right\rfloor$ and set $u_{i+2} = u_i - z_i u_{i+1}$.

First steps :

$$u_2 = u_0 - \left\lfloor \frac{u_0}{u_1} \right\rfloor u_1,$$
$$u_3 = u_1 - \left\lfloor \frac{u_1}{u_2} \right\rfloor u_2,$$

÷

(日)

Computation of $[z_0; z_1, z_2, ...]$ from $\alpha = b/a = b_0/a_0$.

$$\begin{bmatrix} a_{n+1} \\ b_{n+1} \end{bmatrix} = \begin{bmatrix} -z_n & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} a_n \\ b_n \end{bmatrix} \text{ where } z_n = \begin{bmatrix} \frac{b_n}{a_n} \end{bmatrix}$$

Computation of $[z_0; z_1, z_2, \dots]$ from $\alpha = b/a = b_0/a_0$.

$$\begin{bmatrix} a_{n+1} \\ b_{n+1} \end{bmatrix} = \underbrace{\begin{bmatrix} -z_n & 1 \\ 1 & 0 \end{bmatrix}}_{M_{z_n}^{-1}} \begin{bmatrix} a_n \\ b_n \end{bmatrix} \text{ where } z_n = \begin{bmatrix} b_n \\ a_n \end{bmatrix}$$
$$f a_n \neq 0 \text{ let } M_{z_n} = \begin{bmatrix} 0 & 1 \\ 1 & z_n \end{bmatrix}, \text{ otherwise } M_n = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Computation of $[z_0; z_1, z_2, \dots]$ from $\alpha = b/a = b_0/a_0$.

$$\begin{bmatrix} a_{n+1} \\ b_{n+1} \end{bmatrix} = \underbrace{\begin{bmatrix} -z_n & 1 \\ 1 & 0 \end{bmatrix}}_{M_{z_n}^{-1}} \begin{bmatrix} a_n \\ b_n \end{bmatrix} \text{ where } z_n = \begin{bmatrix} \frac{b_n}{a_n} \end{bmatrix}$$
If $a_n \neq 0$ let $M_{z_n} = \begin{bmatrix} 0 & 1 \\ 1 & z_n \end{bmatrix}$, otherwise $M_n = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$.
$$\begin{bmatrix} a \\ b \end{bmatrix} = M_{z_1} M_{z_2} \cdots M_{z_n} \begin{bmatrix} a_n \\ b_n \end{bmatrix}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - つへぐ

Computation of $[z_0; z_1, z_2, \dots]$ from $\alpha = b/a = b_0/a_0$.

$$\begin{bmatrix} a_{n+1} \\ b_{n+1} \end{bmatrix} = \underbrace{\begin{bmatrix} -z_n & 1 \\ 1 & 0 \end{bmatrix}}_{M_{z_n}^{-1}} \begin{bmatrix} a_n \\ b_n \end{bmatrix} \text{ where } z_n = \begin{bmatrix} b_n \\ a_n \end{bmatrix}$$

$$f a_n \neq 0 \text{ let } M_{z_n} = \begin{bmatrix} 0 & 1 \\ 1 & z_n \end{bmatrix}, \text{ otherwise } M_n = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$$

$$\begin{bmatrix} a \\ b \end{bmatrix} = M_{z_1}M_{z_2}\cdots M_{z_n} \begin{bmatrix} a_n \\ b_n \end{bmatrix}$$

$$\begin{bmatrix} q_n \\ p_n \end{bmatrix} = M_{z_1}M_{z_2}\cdots M_{z_n} \begin{bmatrix} 0 \\ 1 \end{bmatrix} \text{ where } \frac{p_n}{q_n} = [z_0; z_1, z_2, \dots, z_n]$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = 釣�?

I

Computation of $[z_0; z_1, z_2, ...]$ from $\alpha = b/a = b_0/a_0$.

$$\begin{bmatrix} a_{n+1} \\ b_{n+1} \end{bmatrix} = \underbrace{\begin{bmatrix} -z_n & 1 \\ 1 & 0 \end{bmatrix}}_{M_{z_n}^{-1}} \begin{bmatrix} a_n \\ b_n \end{bmatrix} \text{ where } z_n = \begin{bmatrix} b_n \\ a_n \end{bmatrix}$$

$$f a_n \neq 0 \text{ let } M_{z_n} = \begin{bmatrix} 0 & 1 \\ 1 & z_n \end{bmatrix}, \text{ otherwise } M_n = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$$

$$\begin{bmatrix} a \\ b \end{bmatrix} = M_{z_1}M_{z_2}\cdots M_{z_n} \begin{bmatrix} a_n \\ b_n \end{bmatrix}$$

$$\begin{bmatrix} q_n \\ p_n \end{bmatrix} = M_{z_1}M_{z_2}\cdots M_{z_n} \begin{bmatrix} 0 \\ 1 \end{bmatrix} \text{ where } \frac{p_n}{q_n} = [z_0; z_1, z_2, \dots, z_n]$$

$$\begin{bmatrix} a \\ b \end{bmatrix} = \lim_{n \to \infty} M_{z_1}M_{z_2}\cdots M_{z_n} \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

In order to draw a discrete line of slope $\alpha = b/a$:

- Compute the matrices $M_{z_n} = \begin{bmatrix} 0 & 1 \\ 1 & z_n \end{bmatrix}$ in order to obtain the list $[z_0; z_1, z_2, \dots]$.
- Compute a Sturmian word w_{lpha} using the morphisms

$$\tau_{z_n} = \left\{ \begin{array}{c} 1 \mapsto 2\\ 2 \mapsto 12^{z_n} \end{array} \right.$$

• Draw the geometric representation of w_{α} .

Formalization of the Freeman chain-code

Let $\mathcal{A}_d = \{1, 2, \dots, d\}$ and (e_1, e_2, \dots, e_d) be the canonical base of \mathbb{R}^d . We consider \mathfrak{F} be the vector space of mappings from $\mathbb{Z}^d \times \mathcal{A}_d$ to \mathbb{R} that takes everywhere zero value except for a finite set.

Formalization of the Freeman chain-code

Let $\mathcal{A}_d = \{1, 2, \dots, d\}$ and (e_1, e_2, \dots, e_d) be the canonical base of \mathbb{R}^d . We consider \mathfrak{F} be the vector space of mappings from $\mathbb{Z}^d \times \mathcal{A}_d$ to \mathbb{R} that takes everywhere zero value except for a finite set.

Let (\vec{x}, e_i) be the element of \mathfrak{F} that takes value 1 at (\vec{x}, i) and 0 elsewhere.

$$\pi_d: \mathcal{A}_d^* \longrightarrow \mathfrak{F}$$

 $\pi_d(w) = \sum_{w = p \cdot i \cdot s} (\vec{p}, e_i)$

Formalization of the Freeman chain-code

Let $\mathcal{A}_d = \{1, 2, \dots, d\}$ and (e_1, e_2, \dots, e_d) be the canonical base of \mathbb{R}^d . We consider \mathfrak{F} be the vector space of mappings from $\mathbb{Z}^d \times \mathcal{A}_d$ to \mathbb{R} that takes everywhere zero value except for a finite set.

Let (\vec{x}, e_i) be the element of \mathfrak{F} that takes value 1 at (\vec{x}, i) and 0 elsewhere.

$$\pi_d: \mathcal{A}_d^* \longrightarrow \mathfrak{F}$$

 $\pi_d(w) = \sum_{w = p \cdot i \cdot s} (\vec{p}, e_i)$

・ロト・(中・・モ・・モ・) やくの

The 1-dimensional geometric realization $E_1(\sigma)$ of a word morphism σ is the linear mapping defined on \mathfrak{F} such that :

The 1-dimensional geometric realization $E_1(\sigma)$ of a word morphism σ is the linear mapping defined on \mathfrak{F} such that :

The E_1^* operator

We consider \mathfrak{F}^* the dual space of \mathfrak{F} and the linear form :

$$\langle (\vec{y}, e_j), (\vec{x}, e_i^*) \rangle \stackrel{\text{def.}}{=} \begin{cases} 1 \text{ if } \vec{x} = \vec{y} \text{ and } i = j, \\ 0 \text{ otherwise.} \end{cases}$$

The dual operator E_1^* of E_1 is given by

$$\langle E_1(\sigma)(\vec{y}, e_j), (\vec{x}, e_i^*) \rangle = \langle (\vec{y}, e_j), E_1^*(\sigma)(\vec{x}, e_i^*) \rangle.$$

In the case where M_{σ} is unimodular

$$E_1^*(\sigma)(\vec{x}, e_i^*) := \sum_{j \in \mathcal{A}} \sum_{ui \text{ prefix of } \sigma(j)} \left(M_{\sigma}^{-1}\left(\vec{x} - \vec{u} \right), e_j^* \right).$$

22 / 46

<ロト <回 > < 注 > < 注 > … 注

Geometrical representation of \mathfrak{F}^*

We represent an element (\vec{x}, e_i^*) as :

$$(ec{x}, e^*_i) \longrightarrow \{ec{x} + e_i + \sum_{i
eq j} \lambda_j e_i \, | \, \lambda_j \in [0, 1] \}.$$

Geometrical representation of \mathfrak{F}^*

We represent an element (\vec{x}, e_i^*) as :

$$(ec{x}, e^*_i) \longrightarrow \{ec{x} + e_i + \sum_{i
eq j} \lambda_j e_i \, | \, \lambda_j \in [0, 1]\}.$$

Examples :

• *d* = 2

◆ロ > ◆母 > ◆臣 > ◆臣 > ○日 ● ○ ○ ○

Geometrical representation of \mathfrak{F}^*

We represent an element (\vec{x}, e_i^*) as :

$$(ec{x}, e^*_i) \longrightarrow \{ec{x} + e_i + \sum_{i
eq j} \lambda_j e_i \, | \, \lambda_j \in [0, 1]\}.$$

Definition

A substitution σ is *primitive* if, for any letter $i \in A$ there exists n such that $\sigma^n(i)$ contains all the letters of A.

Definition

A substitution σ is *primitive* if, for any letter $i \in A$ there exists n such that $\sigma^n(i)$ contains all the letters of A.

Given σ and τ two primitive substitutions :

$$E_1(\sigma) \circ E_1(\tau) = E_1(\sigma \circ \tau),$$
$$E_1^*(\sigma) \circ E_1^*(\tau) = E_1^*(\tau \circ \sigma).$$

Given some slope $\alpha = b/a = [z_0; z_1, z_2, ...]$ let's take a look at the geometric representations

•
$$E_1(\tau_{z_0}) \circ E_1(\tau_{z_1}) \circ \cdots \circ E_1(\tau_{z_n})(\vec{0}, e_2),$$

and

•
$$E_1^*(\tau_{z_0}) \circ E_1^*(\tau_{z_1}) \circ \cdots \circ E_1^*(\tau_{z_n})(\vec{0}, e_2),$$

for $n = 1, 2, \ldots$

Recall that :

$$\left[\begin{array}{c} q_n \\ p_n \end{array}\right] = M_{z_1} M_{z_2} \cdots M_{z_n} \left[\begin{array}{c} 0 \\ 1 \end{array}\right]$$

and

$$\frac{p_n}{q_n} = [z_0; z_1, z_2, \ldots, z_n]$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ● ●

$$\begin{aligned} (a,b) &= (\pi,\sqrt{3}), \sqrt{3}/\pi = [0;1,1,4,2,1,2,3,7,3,\dots], \\ E_1(\tau_0) &= E_1(\tau_1) &= E_1(\tau_1) &= E_1(\tau_4) &= E_1(\tau_2)(\vec{0},e_2) \\ E_1^*(\tau_0) &= E_1^*(\tau_1) &= E_1^*(\tau_1) &= E_1^*(\tau_4) &= E_1^*(\tau_2)(\vec{0},e_2^*) \end{aligned}$$

$$(a, b) = (\pi, \sqrt{3}), \sqrt{3}/\pi = [0; 1, 1, 4, 2, 1, 2, 3, 7, 3, \dots], E_1(\tau_0) \circ E_1(\tau_1) \circ E_1(\tau_1) \circ E_1(\tau_4) \circ E_1(\tau_2) \circ E_1(\tau_1)(\vec{0}, e_2) E_1^*(\tau_0) \circ E_1^*(\tau_1) \circ E_1^*(\tau_1) \circ E_1^*(\tau_4) \circ E_1^*(\tau_2) \circ E_1^*(\tau_1)(\vec{0}, e_2^*)$$

$(a, b) = (\pi, \sqrt{3}), \sqrt{3}/\pi = [0; 1, 1, 4, 2, 1, 2, 3, 7, 3, ...],$ $E_1(\tau_0) \circ E_1(\tau_1) \circ E_1(\tau_1) \circ E_1(\tau_4) \circ E_1(\tau_2) \circ E_1(\tau_1) \circ E_1(\tau_2)(\vec{0}, e_2)$ $E_1^*(\tau_0) \circ E_1^*(\tau_1) \circ E_1^*(\tau_1) \circ E_1^*(\tau_4) \circ E_1^*(\tau_2) \circ E_1^*(\tau_1) \circ E_1^*(\tau_2)(\vec{0}, e_2^*)$

 $(a, b) = (\pi, \sqrt{3}), \sqrt{3}/\pi = [0; 1, 1, 4, 2, 1, 2, 3, 7, 3, ...],$ $E_1(\tau_0) \circ E_1(\tau_1) \circ E_1(\tau_1) \circ E_1(\tau_4) \circ E_1(\tau_2) \circ E_1(\tau_1) \circ E_1(\tau_2) \circ E_1(\tau_3)(\vec{0}, e_1^*(\tau_1) \circ E_1^*(\tau_1) \circ E_1^*(\tau_1) \circ E_1^*(\tau_2) \circ E_1^*(\tau_1) \circ E_1^*(\tau_2) \circ E_1^*(\tau_3)(\vec{0}, e_1^*(\tau_1) \circ E_1^*(\tau_2) \circ E_1^*(\tau_3)) = E_1^*(\tau_3)$

26 / 46

 $(a, b) = (\pi, \sqrt{3}), \sqrt{3}/\pi = [0; 1, 1, 4, 2, 1, 2, 3, 7, 3, \dots],$ $E_1(\tau_0) \circ E_1(\tau_1) \circ E_1(\tau_1) \circ E_1(\tau_4) \circ E_1(\tau_2) \circ E_1(\tau_1) \circ E_1(\tau_2) \circ E_1(\tau_3) \circ E_1(\tau_3) \circ E_1^*(\tau_0) \circ E_1^*(\tau_1) \circ E_1^*(\tau_1) \circ E_1^*(\tau_4) \circ E_1^*(\tau_2) \circ E_1^*(\tau_1) \circ E_1^*(\tau_2) \circ E_1^*(\tau_3) \circ E_1^$

 $(a, b) = (\pi, \sqrt{3}), \sqrt{3}/\pi = [0; 1, 1, 4, 2, 1, 2, 3, 7, 3, ...],$ $E_1(\tau_0) \circ E_1(\tau_1) \circ E_1(\tau_1) \circ E_1(\tau_4) \circ E_1(\tau_2) \circ E_1(\tau_1) \circ E_1(\tau_2) \circ E_1(\tau_3) \circ E_1(\tau_1) \circ E_1^*(\tau_1) \circ E_1^*(\tau_1) \circ E_1^*(\tau_4) \circ E_1^*(\tau_2) \circ E_1^*(\tau_1) \circ E_1^*(\tau_2) \circ E_1^*(\tau_3) \circ E_1^$

E_1^* and Christoffel words

Theorem (Berthé, de Luca, Reutenauer, 2007)

The geometrical representation of

$$E_1^*(\tau_{z_0}) \circ E_1^*(\tau_{z_1}) \circ \cdots \circ E_1^*(\tau_{z_n})(\vec{0}, e_2^*)$$

27 / 46

codes the Christoffel word of slope p_n/q_n where $q_n/p_n = [z_0; z_1, ..., z_n]$.

Theorem (Berthé, de Luca, Reutenauer, 2007)

The geometrical representation of

$$E_1^*(\tau_{z_0}) \circ E_1^*(\tau_{z_1}) \circ \cdots \circ E_1^*(\tau_{z_n})(\vec{0}, e_2^*)$$

codes the Christoffel word of slope p_n/q_n where $q_n/p_n = [z_0; z_1, ..., z_n]$.

Corollary

Given
$$\alpha = [z_0; z_1, z_2 \dots] \notin \mathbb{Q}$$
, limit

$$\lim_{n\to\infty} E_1^*(\tau_{z_0}) \circ E_1^*(\tau_{z_1}) \circ \cdots E_1^*(\tau_{z_n}) ((\vec{0}, e_1^*) + (\vec{0}, e_2^*))$$

exist and its geometrical interpretation is a discrete line of slope $-1/\alpha$.

Definition

A substitution σ is *unimodular* if its incidence matrix M_{σ} has determinant +1 or -1.

Let $\mathcal{P}_{\vec{\alpha}}$ be the *plane* that passes through the origin with normal vector $\vec{\alpha}$.

Let $\mathfrak{G}_{\vec{\alpha}} = \{ (\vec{x}, e_i^*) \in \mathfrak{F}^* \, | \, \mathcal{P}_{\vec{\alpha}} \text{ intersects the segment } [\vec{x}, \vec{x} + e_i] \}$

Theorem (Arnoux, Ito)

If σ is a primitive unimodular substitution, then

 $E_1^*(\sigma)(\mathfrak{G}_{\vec{\alpha}}) = \mathfrak{G}_{{}^tM_\sigma\vec{\alpha}}$

Moreover, two distincs elements $(\vec{x}, e_i^*), (\vec{y}, e_j^*)$ have disjoint images by $E_1^*(\sigma)$.

Given a vector $\vec{\alpha}$, in order to generate the discrete plane $\mathfrak{G}_{\vec{\alpha}}$:

• How to generate a sequence of primitive unimodular substitutions $(\sigma_i)_{i\geq 1}$ such that $\vec{\alpha} = \lim_{n\to\infty} {}^t M_{\sigma_1} {}^t M_{\sigma_2} \cdots {}^t M_{\sigma_n} e_3$?

Continued fraction

Many possible generalizations : Jacobi-Perron, Brun, Poincaré, Selmer, . . .

Continued fraction

Many possible generalizations : Jacobi-Perron, Brun, Poincaré, Selmer, ...

• Best approximation Let $\alpha = [z_0; z_1, ...]$. For each $n \ge 0$, let $\frac{p_n}{q_n} = [z_0; z_1, z_2, ..., z_n]$ then any $p, q \in \mathbb{N}$ such that $1 \le q \le q_n$ and $\frac{p}{q} \ne \frac{p_n}{q_n}$ satisfies

$$|q_n\alpha-p_n|<|q\alpha-p|.$$

See, e.g., Khintchine, Cassels.

Continued fraction

Many possible generalizations : Jacobi-Perron, Brun, Poincaré, Selmer, ...

• Best approximation Let $\alpha = [z_0; z_1, ...]$. For each $n \ge 0$, let $\frac{p_n}{q_n} = [z_0; z_1, z_2, ..., z_n]$ then any $p, q \in \mathbb{N}$ such that $1 \le q \le q_n$ and $\frac{p}{q} \ne \frac{p_n}{q_n}$ satisfies $|q_n \alpha - p_n| < |q \alpha - p|$.

 Let α, β ∈ ℝ the Jacobi-Perron algorithm computes (p_i, q_i, r_i)_{i≥1} such that for all n ≥ 0,

$$\left|\alpha - \frac{p_n}{r_n}\right| < \frac{1}{r_n^{1+\epsilon}} \text{ and } \left|\beta - \frac{q_n}{r_n}\right| < \frac{1}{r_n^{1+\epsilon}}.$$

Jacobi-Perron's algorithm

• Input :
$$(a, b, c) \in \mathbb{R}^3$$
, $0 \le \min(a, b), \max(a, b) \le c$
Initialization : $(a_0, b_0, c_0) := (a, b, c)$,

$$(a_{n+1}, b_{n+1}, c_{n+1}) := \begin{cases} \left(b_n - a_n \left\lfloor \frac{b_n}{a_n} \right\rfloor, c_n - a_n \left\lfloor \frac{c_n}{a_n} \right\rfloor, a_n \right) & \text{if } a_n \neq 0, \\ \\ \left(0, c_n - b_n \left\lfloor \frac{c_n}{b_n} \right\rfloor, b_n \right) & \text{if } a_n = 0 & \text{and } b_n \neq 0, \\ \\ \left(0, 0, c_n \right) & \text{if } a_n = b_n = 0. \end{cases}$$

Jacobi-Perron's algorithm

• Input :
$$(a, b, c) \in \mathbb{R}^3$$
, $0 \le \min(a, b), \max(a, b) \le c$
Initialization : $(a_0, b_0, c_0) := (a, b, c)$,

$$(a_{n+1}, b_{n+1}, c_{n+1}) := \begin{cases} \left(b_n - a_n \left\lfloor \frac{b_n}{a_n} \right\rfloor, c_n - a_n \left\lfloor \frac{c_n}{a_n} \right\rfloor, a_n \right) \text{ if } a_n \neq 0, \\\\ \left(0, c_n - b_n \left\lfloor \frac{c_n}{b_n} \right\rfloor, b_n \right) \text{ if } a_n = 0 \text{ and } b_n \neq 0, \\\\ \left(0, 0, c_n \right) \text{ if } a_n = b_n = 0. \end{cases}$$

The *Jacobi-Perron matrices* are the unimodular matrices that satisfy :

$$\begin{bmatrix} a_n \\ b_n \\ c_n \end{bmatrix} = {}^t M_n \begin{bmatrix} a_{n+1} \\ b_{n+1} \\ c_{n+1} \end{bmatrix}$$

Jacobi-Perron matrices

•
$$(a_{n+1}, b_{n+1}, c_{n+1}) := (b_n - a_n B_n, c_n - a_n C_n, a_n)$$

 $M_{B_n, C_n} := \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & B_n & C_n \end{bmatrix}$ with $B_n = \left\lfloor \frac{b_n}{a_n} \right\rfloor$ and $C_n = \left\lfloor \frac{c_n}{a_n} \right\rfloor$,

•
$$(a_{n+1}, b_{n+1}, c_{n+1}) := (0, c_n - b_n E_n, b_n),$$

 $M_{E_n} := \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & E_n \end{bmatrix}$ with $E_n = \lfloor \frac{c_n}{b_n} \rfloor,$
• $(a_{n+1}, b_{n+1}, c_{n+1}) := (0, 0, c_n), M_{\text{ld}} := \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

◆ロ〉 ◆聞〉 ◆臣〉 ◆臣〉 三目 - のへで

•
$$M_{B_n,C_n} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & B_n & C_n \end{bmatrix}$$

• $M_{E_n} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & E_n \end{bmatrix}$
• $M_{\text{Id}} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

•
$$M_{B_n,C_n} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & B_n & C_n \end{bmatrix}$$

• $M_{E_n} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & E_n \end{bmatrix}$
• $M_{Id} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \longrightarrow \sigma_{Id} = \begin{cases} 1 \mapsto 1 \\ 2 \mapsto 2 \\ 3 \mapsto 3 \end{cases}$

・ロト・西ト・西ト・日・ ひゃぐ

33 / 46

•
$$M_{B_n,C_n} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & B_n & C_n \end{bmatrix}$$

•
$$M_{E_n} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & E_n \end{bmatrix} \longrightarrow \sigma_{E_n} = \begin{cases} 1 \mapsto 1 \\ 2 \mapsto 3 \\ 3 \mapsto 23^{E_n} \end{cases}$$

•
$$M_{\mathsf{Id}} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \longrightarrow \sigma_{\mathsf{Id}} = \begin{cases} 1 \mapsto 1 \\ 2 \mapsto 2 \\ 3 \mapsto 3 \end{cases}$$

◆□ → ◆□ → ◆三 → ◆□ → ◆□ → ◆□ →

33 / 46

•
$$M_{B_n,C_n} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & B_n & C_n \end{bmatrix} \longrightarrow \sigma_{B_n,C_n} = \begin{cases} 1 \mapsto 3 \\ 2 \mapsto 13^{B_n} \\ 3 \mapsto 23^{C_n} \end{cases}$$

•
$$M_{E_n} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & E_n \end{bmatrix} \longrightarrow \sigma_{E_n} = \begin{cases} 1 \mapsto 1 \\ 2 \mapsto 3 \\ 3 \mapsto 23^{E_n} \end{cases}$$

•
$$M_{\mathsf{Id}} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \longrightarrow \sigma_{\mathsf{Id}} = \begin{cases} 1 \mapsto 1 \\ 2 \mapsto 2 \\ 3 \mapsto 3 \end{cases}$$

•
$$M_{B_n,C_n} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & B_n & C_n \end{bmatrix} \longrightarrow \sigma_{B_n,C_n} = \begin{cases} 1 \mapsto 3 \\ 2 \mapsto 13^{B_n} \\ 3 \mapsto 23^{C_n} \end{cases}$$

•
$$M_{E_n} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & E_n \end{bmatrix} \longrightarrow \sigma_{E_n} = \begin{cases} 1 \mapsto 1 \\ 2 \mapsto 3 \\ 3 \mapsto 23^{E_n} \end{cases}$$

•
$$M_{\mathsf{Id}} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \longrightarrow \sigma_{\mathsf{Id}} = \begin{cases} 1 \mapsto 1 \\ 2 \mapsto 2 \\ 3 \mapsto 3 \end{cases}$$

Notation : we note $(M_{\langle i \rangle})_{i \geq 1}$ (resp. $(\sigma_{\langle i \rangle})_{i \geq 1}$) the sequence of matrices (resp. substitutions) produced by the Jacobi-Perron algorithm.

Starting with the unit cube
$$\mathcal{U}=(ec{0},e_1^*)+(ec{0},e_2^*)+(ec{0},e_3^*).$$
 \mathcal{U}

$$\sigma_{B,C} = \begin{cases} 1 \mapsto 3\\ 2 \mapsto 13^{B_n}\\ 3 \mapsto 23^{C_n} \end{cases}$$

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - のへで

34 / 46

Starting with the unit cube $\mathcal{U} = (\vec{0}, e_1^*) + (\vec{0}, e_2^*) + (\vec{0}, e_3^*).$ $E_1^*(\sigma_{1,1})(\mathcal{U})$

$$\sigma_{B,C} = \begin{cases} 1 \mapsto 3\\ 2 \mapsto 13^{B_n}\\ 3 \mapsto 23^{C_n} \end{cases}$$

・ロト ・母 ト ・ヨ ト ・ヨ ・ つへの

Starting with the unit cube $\mathcal{U} = (\vec{0}, e_1^*) + (\vec{0}, e_2^*) + (\vec{0}, e_3^*).$ $E_1^*(\sigma_{1,1}) \circ E_1^*(\sigma_{2,2})(\mathcal{U})$

$$\sigma_{B,C} = \begin{cases} 1 \mapsto 3\\ 2 \mapsto 13^{B_n}\\ 3 \mapsto 23^{C_n} \end{cases}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● ● ●

Starting with the unit cube $\mathcal{U} = (\vec{0}, e_1^*) + (\vec{0}, e_2^*) + (\vec{0}, e_3^*).$ $E_1^*(\sigma_{1,1}) \circ E_1^*(\sigma_{2,2}) \circ E_1^*(\sigma_{1,1})(\mathcal{U})$

$$\sigma_{B,C} = \begin{cases} 1 \mapsto 3\\ 2 \mapsto 13^{B_n}\\ 3 \mapsto 23^{C_n} \end{cases}$$

▲ロ > ▲ □ > ■ = ■ → □ > ■ → □ > ■ → □ > ■ > ■ → □ > ■ > ■ → □ > ■ > ■ → □ > ■ → □ > ■ > ■ → □ = → □

Starting with the unit cube $\mathcal{U} = (\vec{0}, e_1^*) + (\vec{0}, e_2^*) + (\vec{0}, e_3^*).$ $E_1^*(\sigma_{1,1}) \circ E_1^*(\sigma_{2,2}) \circ E_1^*(\sigma_{1,1}) \circ E_1^*(\sigma_{2,2})(\mathcal{U})$

$$\sigma_{B,C} = \begin{cases} 1 \mapsto 3\\ 2 \mapsto 13^{B_n}\\ 3 \mapsto 23^{C_n} \end{cases}$$

・ロト <
同 ト <
言 ト <
言 ト ミ の へ ()
34 / 46
</p>

Starting with the unit cube $\mathcal{U} = (\vec{0}, e_1^*) + (\vec{0}, e_2^*) + (\vec{0}, e_3^*).$ $E_1^*(\sigma_{1,1}) \circ E_1^*(\sigma_{2,2}) \circ E_1^*(\sigma_{1,1}) \circ E_1^*(\sigma_{2,2}) \circ E_1^*(\sigma_{1,1})(\mathcal{U})$

$$\sigma_{B,C} = \begin{cases} 1 \mapsto 3\\ 2 \mapsto 13^{B_n}\\ 3 \mapsto 23^{C_n} \end{cases}$$

Starting with the unit cube $\mathcal{U} = (\vec{0}, e_1^*) + (\vec{0}, e_2^*) + (\vec{0}, e_3^*).$ $E_1^*(\sigma_{1,1}) \circ E_1^*(\sigma_{2,2}) \circ E_1^*(\sigma_{1,1}) \circ E_1^*(\sigma_{2,2}) \circ E_1^*(\sigma_{1,1})$ $\circ E_1^*(\sigma_{2,2})(\mathcal{U})$

$$\sigma_{B,C} = \begin{cases} 1 \mapsto 3\\ 2 \mapsto 13^{B_n}\\ 3 \mapsto 23^{C_n} \end{cases}$$

・ロト <
同 ト <
言 ト <
言 ト ミ の へ や
34 / 46
</p>

Starting with the unit cube $\mathcal{U} = (\vec{0}, e_1^*) + (\vec{0}, e_2^*) + (\vec{0}, e_3^*).$ $E_1^*(\sigma_{1,1}) \circ E_1^*(\sigma_{2,2}) \circ E_1^*(\sigma_{1,1}) \circ E_1^*(\sigma_{2,2}) \circ E_1^*(\sigma_{1,1})$ $\circ E_1^*(\sigma_{2,2}) \circ E_1^*(\sigma_{1,1})(\mathcal{U})$

$$\sigma_{B,C} = \begin{cases} 1 \mapsto 3\\ 2 \mapsto 13^{B_n}\\ 3 \mapsto 23^{C_n} \end{cases}$$

Starting with the unit cube $\mathcal{U} = (\vec{0}, e_1^*) + (\vec{0}, e_2^*) + (\vec{0}, e_3^*).$ $E_1^*(\sigma_{1,1}) \circ E_1^*(\sigma_{2,2}) \circ E_1^*(\sigma_{1,1}) \circ E_1^*(\sigma_{2,2}) \circ E_1^*(\sigma_{1,1})$ $\circ E_1^*(\sigma_{2,2}) \circ E_1^*(\sigma_{1,1}) \circ E_1^*(\sigma_{2,2})(\mathcal{U})$

$$\sigma_{B,C} = \begin{cases} 1 \mapsto 3\\ 2 \mapsto 13^{B_n}\\ 3 \mapsto 23^{C_n} \end{cases}$$

□ ▶ < ♬ ▶ < 볼 ▶ < 볼 ▶ 볼 ∽ 의 < 은 34 / 46

Starting with the unit cube $\mathcal{U} = (\vec{0}, e_1^*) + (\vec{0}, e_2^*) + (\vec{0}, e_3^*).$ $E_1^*(\sigma_{1,1}) \circ E_1^*(\sigma_{2,2}) \circ E_1^*(\sigma_{1,1}) \circ E_1^*(\sigma_{2,2}) \circ E_1^*(\sigma_{1,1})$ $\circ E_1^*(\sigma_{2,2}) \circ E_1^*(\sigma_{1,1}) \circ E_1^*(\sigma_{2,2}) \circ E_1^*(\sigma_{1,1})(\mathcal{U})$

$$\sigma_{B,C} = \begin{cases} 1 \mapsto 3\\ 2 \mapsto 13^{B_n}\\ 3 \mapsto 23^{C_n} \end{cases}$$

Starting with the unit cube $\mathcal{U} = (\vec{0}, e_1^*) + (\vec{0}, e_2^*) + (\vec{0}, e_3^*).$ $E_1^*(\sigma_{1,1}) \circ E_1^*(\sigma_{2,2}) \circ E_1^*(\sigma_{1,1}) \circ E_1^*(\sigma_{2,2}) \circ E_1^*(\sigma_{1,1})(\mathcal{U})$

$$\sigma_{B,C} = \begin{cases} 1 \mapsto 3\\ 2 \mapsto 13^{B_n}\\ 3 \mapsto 23^{C_n} \end{cases}$$
$$\sigma_E = \begin{cases} 1 \mapsto 1\\ 2 \mapsto 3\\ 3 \mapsto 23^E \end{cases}$$

Starting with the unit cube $\mathcal{U} = (\vec{0}, e_1^*) + (\vec{0}, e_2^*) + (\vec{0}, e_3^*).$ $E_1^*(\sigma_{1,1}) \circ E_1^*(\sigma_{2,2}) \circ E_1^*(\sigma_{1,1}) \circ E_1^*(\sigma_{2,2}) \circ E_1^*(\sigma_{1,1})$ $\circ E_1^*(\sigma_2)(\mathcal{U})$

$$\sigma_{B,C} = \begin{cases} 1 \mapsto 3\\ 2 \mapsto 13^{B_n}\\ 3 \mapsto 23^{C_n} \end{cases}$$
$$\sigma_E = \begin{cases} 1 \mapsto 1\\ 2 \mapsto 3\\ 3 \mapsto 23^E \end{cases}$$

・ロト ・回ト ・モト ・モト

Starting with the unit cube $\mathcal{U} = (\vec{0}, e_1^*) + (\vec{0}, e_2^*) + (\vec{0}, e_3^*).$ $E_1^*(\sigma_{1,1}) \circ E_1^*(\sigma_{2,2}) \circ E_1^*(\sigma_{1,1}) \circ E_1^*(\sigma_{2,2}) \circ E_1^*(\sigma_{1,1})$ $\circ E_1^*(\sigma_2) \circ E_1^*(\sigma_1)(\mathcal{U})$

$$\sigma_{B,C} = \begin{cases} 1 \mapsto 3\\ 2 \mapsto 13^{B_n}\\ 3 \mapsto 23^{C_n} \end{cases}$$
$$\sigma_E = \begin{cases} 1 \mapsto 1\\ 2 \mapsto 3\\ 3 \mapsto 23^E \end{cases}$$

・ロト ・四ト ・ヨト ・ヨト

Starting with the unit cube $\mathcal{U} = (\vec{0}, e_1^*) + (\vec{0}, e_2^*) + (\vec{0}, e_3^*).$ $E_1^*(\sigma_{1,1}) \circ E_1^*(\sigma_{2,2}) \circ E_1^*(\sigma_{1,1}) \circ E_1^*(\sigma_{2,2}) \circ E_1^*(\sigma_{1,1})$ $\circ E_1^*(\sigma_2) \circ E_1^*(\sigma_1) \circ E_1^*(\sigma_3)(\mathcal{U})$

$$\sigma_{B,C} = \begin{cases} 1 \mapsto 3\\ 2 \mapsto 13^{B_n}\\ 3 \mapsto 23^{C_n} \end{cases}$$
$$\sigma_E = \begin{cases} 1 \mapsto 1\\ 2 \mapsto 3\\ 3 \mapsto 23^E \end{cases}$$

ヘロン 人間 とくほと 人ほとう

Starting with the unit cube $\mathcal{U} = (\vec{0}, e_1^*), (\vec{0}, e_2^*), (\vec{0}, e_3^*)).$ $E_1^*(\sigma_{1,1})(\mathcal{U})$

$$\sigma_{B,C} = \begin{cases} 1 \mapsto 3\\ 2 \mapsto 3^{B_n} 1\\ 3 \mapsto 23^{C_n} \end{cases}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

35 / 46

Starting with the unit cube $\mathcal{U} = (\vec{0}, e_1^*), (\vec{0}, e_2^*), (\vec{0}, e_3^*)).$ $E_1^*(\sigma_{1,1}) \circ E_1^*(\sigma_{2,2})(\mathcal{U})$

$$\sigma_{B,C} = \begin{cases} 1 \mapsto 3\\ 2 \mapsto 3^{B_n} 1\\ 3 \mapsto 23^{C_n} \end{cases}$$

Starting with the unit cube $\mathcal{U} = (\vec{0}, e_1^*), (\vec{0}, e_2^*), (\vec{0}, e_3^*)).$ $E_1^*(\sigma_{1,1}) \circ E_1^*(\sigma_{2,2}) \circ E_1^*(\sigma_{1,1})(\mathcal{U})$

$$\sigma_{B,C} = \begin{cases} 1 \mapsto 3\\ 2 \mapsto 3^{B_n} 1\\ 3 \mapsto 23^{C_n} \end{cases}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで
Examples in dimension 3

Starting with the unit cube $\mathcal{U} = (\vec{0}, e_1^*), (\vec{0}, e_2^*), (\vec{0}, e_3^*)).$ $E_1^*(\sigma_{1,1}) \circ E_1^*(\sigma_{2,2}) \circ E_1^*(\sigma_{1,1}) \circ E_1^*(\sigma_{2,2})(\mathcal{U})$

$$\sigma_{B,C} = \begin{cases} 1 \mapsto 3\\ 2 \mapsto 3^{B_n} 1\\ 3 \mapsto 23^{C_n} \end{cases}$$

・ロト・日・・日・・日・ うへの

Examples in dimension 3

Starting with the unit cube $\mathcal{U} = (\vec{0}, e_1^*), (\vec{0}, e_2^*), (\vec{0}, e_3^*)).$ $E_1^*(\sigma_{1,1}) \circ E_1^*(\sigma_{2,2}) \circ E_1^*(\sigma_{1,1}) \circ E_1^*(\sigma_{2,2}) \circ E_1^*(\sigma_{1,1})(\mathcal{U})$

$$\sigma_{B,C} = \begin{cases} 1 \mapsto 3\\ 2 \mapsto 3^{B_n} 1\\ 3 \mapsto 23^{C_n} \end{cases}$$

Generating the whole plane $\mathfrak{G}_{\vec{\alpha}}$

• dim_Q(*a*, *b*, *c*) = 1 There exists *N* such that for all $n \ge N$, $\sigma_{<n>} = \sigma_{Id}$. $E_1^*(\sigma_{<1>}) \circ \cdots \circ E_1^*(\sigma_{<N>})(\vec{0}, e_3^*)$ tiles the plane.

Generating the whole plane $\mathfrak{G}_{\vec{\alpha}}$

• dim_Q(*a*, *b*, *c*) = 1 There exists *N* such that for all $n \ge N$, $\sigma_{<n>} = \sigma_{Id}$. $E_1^*(\sigma_{<1>}) \circ \cdots \circ E_1^*(\sigma_{<N>})(\vec{0}, e_3^*)$ tiles the plane.

• dim_Q(a, b, c) = 2 There exists N such that for all $n \ge N$, $\sigma_{\langle n \rangle} = \sigma_{E_n}$. $\lim_{n \to \infty} E_1^*(\sigma_{\langle 1 \rangle}) \circ \cdots \circ E_1^*(\sigma_{\langle 2n \rangle})((\vec{0}, e_2^*) + (\vec{0}, e_3^*)) \text{ is an infinite stripe.}$

Generating the whole plane $\mathfrak{G}_{\vec{\alpha}}$

• dim_Q(*a*, *b*, *c*) = 1 There exists *N* such that for all $n \ge N$, $\sigma_{<n>} = \sigma_{Id}$. $E_1^*(\sigma_{<1>}) \circ \cdots \circ E_1^*(\sigma_{<N>})(\vec{0}, e_3^*)$ tiles the plane.

- dim_Q(a, b, c) = 2 There exists N such that for all $n \ge N$, $\sigma_{\langle n \rangle} = \sigma_{E_n}$. $\lim_{n \to \infty} E_1^*(\sigma_{\langle 1 \rangle}) \circ \cdots \circ E_1^*(\sigma_{\langle 2n \rangle})((\vec{0}, e_2^*) + (\vec{0}, e_3^*)) \text{ is an infinite stripe.}$
- dim_Q(a, b, c) = 3 For all n ≥ 1, σ_{<n>} = σ_{B_n,c_n}. As n grows, E₁^{*}(σ_{<1>}) ∘···∘ E₁^{*}(σ_{<2n>})(0, e₃^{*}) forms some infinite *potato*.

Generating the whole plane $\mathfrak{G}_{\vec{\alpha}}$, with dim_Q(a, b, c) = 3

 \star There exists $n_0 \geq 1$ such that for all $k \geq 0$

•
$$B_{n_0+3k} = C_{n_0+3k}$$
,

•
$$C_{n_0+3k+1}-B_{n_0+3k+1}\geq 1$$
,

•
$$B_{n_0+3k+2}=0$$
.

Generating the whole plane $\mathfrak{G}_{\vec{\alpha}}$, with dim_Q(a, b, c) = 3

 $\star\,$ There exists $n_0\geq 1$ such that for all $k\geq 0$

•
$$B_{n_0+3k} = C_{n_0+3k}$$
,
• $C_{n_0+3k+1} - B_{n_0+3k+1} \ge 1$,

•
$$B_{n_0+3k+2} = 0.$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Generating the whole plane $\mathfrak{G}_{\vec{\alpha}}$, with dim_Q(a, b, c) = 3

 $\star\,$ There exists $n_0\geq 1$ such that for all $k\geq 0$

•
$$B_{n_0+3k} = C_{n_0+3k},$$

• $C_{n_0+3k+1} - B_{n_0+3k+1} \ge 1,$

•
$$B_{n_0+3k+2} = 0.$$

$$\mathcal{V} :=$$

Theorem (Ito, Ohtsuki)

Given $\dim_{\mathbb{Q}}(a, b, c) = 3$, If the condition \star holds then

$$\mathfrak{G}_{(a,b,c)} = \lim_{n \to \infty} E_1^*(\sigma_{<1>}) \circ \cdots \circ E_1^*(\sigma_{})(\mathcal{V}).$$

Otherwise,

$$\mathfrak{G}_{(a,b,c)} = \lim_{n\to\infty} E_1^*(\sigma_{<1>}) \circ \cdots \circ E_1^*(\sigma_{})(\mathcal{U}).$$

54(*

$$\mathcal{W} = \begin{cases} (\vec{0}, e_3^*) \text{ if } \dim_{\mathbb{Q}}(a, b, c) \leq 2, \\\\ \mathcal{U} \text{ if } \dim_{\mathbb{Q}}(a, b, c) = 3 \text{ and not } \star, \\\\ \mathcal{V} \text{ if } \dim_{\mathbb{Q}}(a, b, c) = 3 \text{ and } \star. \end{cases}$$

Theorem (Berthé, Lacasse, Paquin, P.)

For any $n \ge 1$, the pattern $\mathcal{T}_n = E_1^*(\sigma_{<1>}) \circ \cdots \circ E_1^*(\sigma_{<n>})(\mathcal{W})$ is a simply connected set.

Polyamond patterns

Let π_0 be the orthogonal projection on the plane $\mathcal{P}_0: x + y + z = 0$.

Definition

A pattern \mathcal{X} is a *polyamond pattern* if the topological boundary of its projection $\pi_0(\mathcal{X})$ is a Jordan curve.

39 / 46

Polyamond patterns

Let π_0 be the orthogonal projection on the plane $\mathcal{P}_0: x + y + z = 0$.

Definition

A pattern \mathcal{X} is a *polyamond pattern* if the topological boundary of its projection $\pi_0(\mathcal{X})$ is a Jordan curve.

Polyamond patterns

Let π_0 be the orthogonal projection on the plane $\mathcal{P}_0: x + y + z = 0$.

Definition

A pattern \mathcal{X} is a *polyamond pattern* if the topological boundary of its projection $\pi_0(\mathcal{X})$ is a Jordan curve.

Proposition

A polyamond pattern \mathcal{X} is simply connected.

Eight-curves

・ロト・日本・日本・日本・日本・日本

Eight-curves

Definition

Given a word $w \in \overline{\mathcal{A}}_d^*$

- w is a closed curve if $\vec{w} = \vec{0}$ and $\pi_{F_d}(w) \neq \varepsilon_{F_d}$, where π_{F_d} is the canonical projection from $\overline{\mathcal{A}}_d^*$ to the free group F_d .
- w is an *eight-curve* if it is a closed curve and if it admits a conjugate of the form w ≡ uv where u and v are closed curves.

Examples

Proposition

The boundary word of a pattern X that is not a polyamond pattern is an eight-curve.

Theorem (Ei)

Let \mathcal{X} be a pattern with boundary word w and σ be a primitive unimodular substitution, then $\widetilde{\sigma^{-1}}(w)$ is a boundary word for $E_1^*(\sigma)(\mathcal{X})$.

Example

Let σ be the Tribonacci substitution : $\sigma(1) = 12$, $\sigma(2) = 13, \sigma(3) = 1$,

43 / 46

We define some set of forbidden words E such that given any substitution σ obtained by the Jacobi-Perron's algorithm

- Eight-curves are included in *E*.
- The boundary words of the generating patterns are not in E.
- For any word $w, \sigma^{-1}(w) \in E$ implies that $w \in E$.

	Mots de Christoffel	Patates de Jacobi- Perron
Approximations	((
successives	v	v
Génère tout	\checkmark	\checkmark
Simple	n/2	/
connexité	li/a	v
Récurrence	\checkmark	\checkmark
Périodes	\checkmark	?
Palindrômes	\checkmark	?
Interprétation		
géométrique	\checkmark	?
(convexité)		

MERCI !