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Polyominoes

Definition

A polyomino is a set of digital squares in the plane such that its
topoligical boundary is a Jordan curve.
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Minimum Length Polygon

←− C

←− L1(C )

←− L2(C )

←− L2(C ) \ L1(C )◦
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Minimum Length Polygon

←− C

←− L1(C )

←− L2(C )

←− L2(C ) \ L1(C )◦

Definition

Given a digital contour C , its inner (resp. outer) polygon L1(C )
(resp. L2(C )) is the erosion (resp. dilatation) of the body of I (C )
by the open unit square centrer on (0, 0).
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Minimum Length Polygon

←− C

←− L1(C )

←− L2(C )

←− L2(C ) \ L1(C )◦

Definition

The minimum length polygon of C is a subset P ∈ R2 such that,

P = arg min
A∈A,L1(C)⊆A, ∂A⊂L2(C)\L1(C)◦

Per(A)

where A is the family of simply connected compact sets of R2.
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Minimum Length Polygon

←− C

←− L1(C )

←− L2(C )

←− L2(C ) \ L1(C )◦

The MLP is:

a good length estimator;
a good tangent estimator;
characteristic of the shape’s convexity;
reversible*.
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Relative Convex Hull

Definition

Let U ∈ R2 and V ⊆ U. The set V is said to be U-convex if for
every x , y ∈ V

xy ⊆ U =⇒ xy ⊆ V .

Definition

Let V ⊆ U ⊆ R2, the intersection of all U-convex sets containing
V is called the U-convex hull of V .

Every set U ⊆ R2 is U-convex.

The usual convexity is the R2-convexity.
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Jacques-Olivier Lachaud and Xavier Provençal Two linear time algorithms for MLP 5 / 1



Set-Theoretic MLP

Theorem (Sloboda, Stoer 1994)

The MLP of a digital contour C, is the L2(C )-convex hull of
L1(C ).

←− L1(C )

←− L2(C )

Jacques-Olivier Lachaud and Xavier Provençal Two linear time algorithms for MLP 6 / 1



The Arithmetic MLP
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Tangential Cover

Definition

The tangential cover of a discrete contour is the set of its Maximal
Digital Straight Segments (MDSS).

∧ stands for a ”convex turn”,
∨ stands for a ”concave turn”.
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Tangential Cover

Definition

The tangential cover of a discrete contour is the set of its Maximal
Digital Straight Segments (MDSS).

v

^

· · · ∧ Mi ∧ · · · ∧ Mj ∧ Mj+1 ∨ Mj+2 ∨ · · · ∨ Mk ∨ Mk+1 ∧ · · ·

. . . convex zone inflexion concave zone inflexion . . .
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Tangential Cover and Convexity

Theorem (Dorksen-Reiter, Debled-Rennesson 2006)

A digital contour is digitally convex iff every couple of con-
secutive MDSS of its tangential cover is made of ∧-turns.
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Convex, Concave and Inflexion Zones

Definition

A digital contour C with tangential cover M1,M2, . . . ,Ml is uniquely split
into a sequence of closed connected sets with a single point overlap as
follows :
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Convex, Concave and Inflexion Zones
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Definition

A convex zone or (∧,∧)-zone is an inextensible sequence of consecutive
∧-turns from (Mi ,Mi+1) to (Mj ,Mj+1). If i 6= j , if starts at Ul(Mi ) and
ends at Uf (Mj+1).
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Definition

A concave zone or (∨,∨)-zone is an inextensible sequence of consecutive
∨-turns from (Mi ,Mi+1) to (Mj ,Mj+1). If i 6= j , if starts at Ll(Mi ) and
ends at Lf (Mj+1).
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Definition

A concave zone or (∨,∨)-zone is an inextensible sequence of consecutive
∨-turns from (Mi ,Mi+1) to (Mj ,Mj+1). If i 6= j , if starts at Ll(Mi ) and
ends at Lf (Mj+1).
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Convex, Concave and Inflexion Zones
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Definition

A convex inflexion zone or (∧,∨)-zone is a ∧-turn followed by a ∨-turn
around a MDSS Mi . It starts at Uf (Mi ) and ends at LL(Mi ). A concave
inflexion zone or (∨,∧)-zone is a ∨-turn followed by a ∧-turn around a
MDSS Mi . It starts at Lf (Mi ) and ends at UL(Mi ).

Jacques-Olivier Lachaud and Xavier Provençal Two linear time algorithms for MLP 10 / 1



Inside and Outside Pixels

• are called inside pixels.
◦ are called outside pixels.
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Definition of AMLP

The AMLP of C is defined on each
zone according to its type:

• (∧,∧) : left side of the left enveloppe,
• (∨,∨) : right side of the right enveloppe,
• (∧,∨) : segment joining Uf to Ll ,
• (∨,∧) : segment joining Lf to Ul .

Theorem

Given a digital contour C, the AMLP of C is the MLP of C.

Proof: show that the AMLP of C is the convex hull of L1(C )
relatively to L2(C ).
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Jacques-Olivier Lachaud and Xavier Provençal Two linear time algorithms for MLP 12 / 1



Definition of AMLP

The AMLP of C is defined on each
zone according to its type:
• (∧,∧) : left side of the left enveloppe,
• (∨,∨) : right side of the right enveloppe,

• (∧,∨) : segment joining Uf to Ll ,
• (∨,∧) : segment joining Lf to Ul .

Theorem

Given a digital contour C, the AMLP of C is the MLP of C.

Proof: show that the AMLP of C is the convex hull of L1(C )
relatively to L2(C ).
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Computation of AMLP

Algorithm

Three steps to compute the AMLP if C :

(1) Compute (Mi )i=1..N the tangential cover of C ;

(2) Decompose (Mi )i=1..N is (α, β)-zones. (α, β ∈ {∧,∨})
(3) For each (α, β)-zones, compute the associate part of the

AMLP.

(1) is performed in O(n) using Lachaud, Vialard and de Vieilleville
2007 (DGCI 2005).

(2) is performed in O(N) where N ≤ n.

(3) is performed in O(n) using Melkman 1987 on each (∧,∧) or
(∨,∨)-zones; while each (∧,∨) or (∨,∧)-zones is treated in
constant time.
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The Combinatorial MLP
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Combinatorial View of Digital Convexity

A contour word is the Freeman code of the border of a
polyomino.

A quadrant word is an inextendable factor of a contour word
over two letters.

10100101010000000030303332232232222222212212Theorem (Brlek, Lachaud, P., Reutenauer “DGCI 2008” )

An hv-convex polyomino P is digitally if and only if the each of its
quadrant words qi is such that its factorization as decreasing
Lyndon words qi = ln1

1 ln2
2 · · · l

nk
k contains only Christoffel words. In

such case, this factorization coincide with its Euclidian convex.
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Jacques-Olivier Lachaud and Xavier Provençal Two linear time algorithms for MLP 15 / 1



Combinatorial View of Digital Convexity

A contour word is the Freeman code of the border of a
polyomino.

A quadrant word is an inextendable factor of a contour word
over two letters.

10100101010000000030303332232232222222212212

Theorem (Brlek, Lachaud, P., Reutenauer “DGCI 2008” )

An hv-convex polyomino P is digitally if and only if the each of its
quadrant words qi is such that its factorization as decreasing
Lyndon words qi = ln1

1 ln2
2 · · · l

nk
k contains only Christoffel words. In

such case, this factorization coincide with its Euclidian convex.
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Christoffel Words

Definition (Borel and Laubie 1993)

C5/7 = 001010010101.
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Lyndon Words

Definition

A word w over an ordered alphabet is a Lyndon word if for all
non-empty words u and v :

w = uv =⇒ w < vu.

(where < denotes the lexicographic order.)

Theorem (Lyndon 1950)

Any word w over an ordered alphabet admits a unique
factorization as decreasing Lyndon words.

Theorem (Duval 1983)

Given a word w of length n, its factorization as decreasing Lyndon
words w = ln1

1 ln2
2 · · · l

nk
k is computed in O(n) using Duval’s

algorithm.
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Adapted Version of Duval’s Algorithm

Using the repetition properties of Christoffel words, we modify
Duval’s algorithm in order to stop the computation if the prefix
read is not prefix of a Christoffel word.
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Computation of the CMLP

0 :→, 1 :↓, 2 :←, 3 :↑
3 < 0 < 1 < 2

111010110110101000000010101011011100333333333333333333222222222222222222

(1)3·(01011011)·(0101)·(1000000)·(101010)·(110)·(011)
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Implementation

Both algorithms AMLP and CMLP have been implemented and are
include in the ImaGene project.
http://gforge.liris.cnrs.fr/projects/imagene
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Thank you!
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