Two linear-time algorithms for computing the minimum length polygon of a digital contour

Jacques-Olivier Lachaud and Xavier Provençal

October 1, 2009

Jacques-Olivier Lachaud and Xavier Provençal Two linear time algorithms for MLP 2/1

ă.

メロメ メタメ メミメ メミメー

A polyomino is a set of digital squares in the plane such that its topoligical boundary is a Jordan curve.

化重变 化重

A polyomino is a set of digital squares in the plane such that its topoligical boundary is a Jordan curve.

医毛毛 医三角

A polyomino is a set of digital squares in the plane such that its topoligical boundary is a Jordan curve.

医毛囊 医牙骨

 \sim

Þ

医间周的间周的

 \leftarrow

冊 - b a.

Þ

医间周的间周的

 \leftarrow

冊 - b a.

Þ

医间周的间周的

4日)

冊 a.

Þ

個 ト イ君 ト イ君 ト

4 0 8 \mathcal{A} .

Definition

Given a digital contour C, its inner (resp. outer) polygon $L_1(C)$ (resp. $L_2(C)$) is the erosion (resp. dilatation) of the body of $I(C)$ by the open unit square centrer on $(0, 0)$.

- 4 国 米 3

Definition

Given a digital contour C, its inner (resp. outer) polygon $L_1(C)$ (resp. $L_2(C)$) is the erosion (resp. dilatation) of the body of $I(C)$ by the open unit square centrer on $(0, 0)$.

Definition

Given a digital contour C, its inner (resp. outer) polygon $L_1(C)$ (resp. $L_2(C)$) is the erosion (resp. dilatation) of the body of $I(C)$ by the open unit square centrer on $(0, 0)$.

Definition

The minimum length polygon of C is a subset $P \in \mathbb{R}^2$ such that,

 $P =$ arg min $A\in \mathcal{A}$, $L_1(\mathcal{C})\subseteq A$, $\partial A\subset L_2(\mathcal{C})\backslash L_1(\mathcal{C})^\circ$ $Per(A)$

where ${\cal A}$ is the family of simply connected compact sets of $\mathbb{R}^2.$

母→ ∢∃→

The MLP is:

Þ

 \rightarrow \equiv \rightarrow

4日)

冊 \rightarrow \rightarrow \equiv \sim

a.

The MLP is:

• a good length estimator;

 \leftarrow

造

 \sim -4 \sim \equiv \rightarrow ∍

The MLP is:

- a good length estimator;
- a good tangent estimator;

The MLP is:

- a good length estimator;
- a good tangent estimator;
- characteristic of the shape's convexity;

The MLP is:

- a good length estimator;
- a good tangent estimator;
- characteristic of the shape's convexity;
- reversible*.

Let $U \in \mathbb{R}^2$ and $V \subseteq U$. The set V is said to be $U\text{-}convex$ if for every $x, y \in V$

 $\overline{xy} \subset U \implies \overline{xy} \subset V.$

AD ▶ ◀ ヨ ▶ ◀ ヨ ▶ │

Let $U \in \mathbb{R}^2$ and $V \subseteq U$. The set V is said to be $U\text{-}convex$ if for every $x, y \in V$

$$
\overline{xy} \subseteq U \implies \overline{xy} \subseteq V.
$$

Definition

Let $V \subseteq U \subseteq \mathbb{R}^2$, the intersection of all U -convex sets containing V is called the U-convex hull of V.

Let $U \in \mathbb{R}^2$ and $V \subseteq U$. The set V is said to be $U\text{-}convex$ if for every $x, y \in V$

$$
\overline{xy} \subseteq U \implies \overline{xy} \subseteq V.
$$

Definition

Let $V \subseteq U \subseteq \mathbb{R}^2$, the intersection of all U -convex sets containing V is called the U-convex hull of V.

• Every set
$$
U \subseteq \mathbb{R}^2
$$
 is *U*-convex.

Let $U \in \mathbb{R}^2$ and $V \subseteq U$. The set V is said to be $U\text{-}convex$ if for every $x, y \in V$

$$
\overline{xy} \subseteq U \implies \overline{xy} \subseteq V.
$$

Definition

Let $V \subseteq U \subseteq \mathbb{R}^2$, the intersection of all U -convex sets containing V is called the U -convex hull of V .

- Every set $U \subseteq \mathbb{R}^2$ is U-convex.
- The usual convexity is the \mathbb{R}^2 -convexity.

Theorem (Sloboda, Stoer 1994)

The MLP of a digital contour C, is the $L_2(C)$ -convex hull of $L_1(\mathcal{C})$.

- 4 国 米 3 \sim

The Arithmetic MLP

 4.17

- 4 三 ト

 \sim

∍

Definition

Definition

Definition

Definition

Definition

The tangential cover of a discrete contour is the set of its Maximal Digital Straight Segments (MDSS).

∧ stands for a "convex turn",

Definition

- ∧ stands for a "convex turn",
- ∨ stands for a "concave turn".

Definition

Theorem (Dorksen-Reiter, Debled-Rennesson 2006)

A digital contour is digitally convex iff every couple of consecutive MDSS of its tangential cover is made of ∧-turns.

Definition

A digital contour C with tangential cover M_1, M_2, \ldots, M_l is uniquely split into a sequence of closed connected sets with a single point overlap as follows :

Definition

A digital contour C with tangential cover M_1, M_2, \ldots, M_l is uniquely split into a sequence of closed connected sets with a single point overlap as follows :

Definition

A digital contour C with tangential cover M_1, M_2, \ldots, M_l is uniquely split into a sequence of closed connected sets with a single point overlap as follows :

Definition

A convex zone or (\wedge, \wedge) -zone is an inextensible sequence of consecutive ∧-turns from (M_i,M_{i+1}) to (M_j,M_{j+1}) . If $i\neq j$, if starts at $U_l(M_i)$ and ends at $U_f(M_{i+1})$.

Definition

A convex zone or (\wedge, \wedge) -zone is an inextensible sequence of consecutive ∧-turns from (M_i,M_{i+1}) to (M_j,M_{j+1}) . If $i\neq j$, if starts at $U_l(M_i)$ and ends at $U_f(M_{i+1})$.

Definition

A concave zone or (\vee, \vee) -zone is an inextensible sequence of consecutive ∨-turns from (M_i,M_{i+1}) to (M_j,M_{j+1}) . If $i\neq j$, if starts at $L_I(M_i)$ and ends at $L_f(M_{i+1})$.

Definition

A concave zone or (\vee, \vee) -zone is an inextensible sequence of consecutive ∨-turns from (M_i,M_{i+1}) to (M_j,M_{j+1}) . If $i\neq j$, if starts at $L_I(M_i)$ and ends at $L_f(M_{i+1})$.

Definition

A convex inflexion zone or (\wedge, \vee) -zone is a \wedge -turn followed by a \vee -turn around a MDSS M_i . It starts at $\mathit{U}_f(M_i)$ and ends at $\mathit{L}_\mathit{L}(M_i)$. A *concave* inflexion zone or (\vee, \wedge) -zone is a \vee -turn followed by a \wedge -turn around a MDSS M_i . It starts at $L_f(M_i)$ and ends at $U_L(M_i)$.

Inside and Outside Pixels

• are called *inside* pixels. ◦ are called outside pixels.

∍

 \leftarrow

4 重

Inches

 \sim

- 4 重 6

э

э

 \sim

 \leftarrow

E

 λ = λ

• (\wedge, \wedge) : left side of the left enveloppe,

- (\wedge, \wedge) : left side of the left enveloppe,
- (\vee, \vee) : right side of the right enveloppe,

∢ 重 ≯

- (\wedge, \wedge) : left side of the left enveloppe,
- (\vee, \vee) : right side of the right enveloppe,

- (\wedge, \wedge) : left side of the left enveloppe,
- (\vee, \vee) : right side of the right enveloppe,
- \bullet (\wedge,\vee) :

- (\wedge, \wedge) : left side of the left enveloppe,
- (\vee, \vee) : right side of the right enveloppe,
- \bullet (\wedge,\vee) :

- (\wedge, \wedge) : left side of the left enveloppe,
- (\vee, \vee) : right side of the right enveloppe,
- \bullet (\wedge,\vee) :

- (\wedge, \wedge) : left side of the left enveloppe,
- (\vee, \vee) : right side of the right enveloppe,
- \bullet (\wedge,\vee) :

- (\wedge, \wedge) : left side of the left enveloppe,
- (\vee, \vee) : right side of the right enveloppe,
- \bullet (\wedge,\vee) : segment joining U_f to L_I ,

Definition of AMLP

- (\wedge, \wedge) : left side of the left enveloppe,
- (\vee, \vee) : right side of the right enveloppe,
- \bullet (\wedge,\vee) : segment joining U_f to L_I ,
- (\vee, \wedge) : segment joining L_f to U_l .

Definition of AMLP

The AMLP of C is defined on each zone according to its type:

- (\wedge, \wedge) : left side of the left enveloppe,
- (\vee, \vee) : right side of the right enveloppe,
- \bullet (\wedge,\vee) : segment joining U_f to L_I ,
- (\vee, \wedge) : segment joining L_f to U_l .

Theorem

Given a digital contour C, the AMLP of C is the MLP of C.

- (\wedge, \wedge) : left side of the left enveloppe,
- (\vee, \vee) : right side of the right enveloppe,
- \bullet (\wedge,\vee) : segment joining U_f to L_I ,
- (\vee, \wedge) : segment joining L_f to U_l .

Theorem

Given a digital contour C, the AMLP of C is the MLP of C.

Proof: show that the AMLP of C is the convex hull of $L_1(C)$ relatively to $L_2(C)$.

Computation of AMLP

Algorithm

Three steps to compute the AMLP if C:

 \sim \sim

 \sim A \sim 4 重 医尿蛋白

Computation of AMLP

Algorithm

Three steps to compute the AMLP if C:

(1) Compute $(M_i)_{i=1..N}$ the tangential cover of C;

(1) is performed in $O(n)$ using Lachaud, Vialard and de Vieilleville 2007 (DGCI 2005).

→ 手下

Algorithm

Three steps to compute the AMLP if C:

- (1) Compute $(M_i)_{i=1..N}$ the tangential cover of C;
- (2) Decompose $(M_i)_{i=1..N}$ is (α, β) -zones. $(\alpha, \beta \in \{\wedge, \vee\})$

- (1) is performed in $O(n)$ using Lachaud, Vialard and de Vieilleville 2007 (DGCI 2005).
- (2) is performed in $O(N)$ where $N \leq n$.

- 4 国 国 4

Algorithm

Three steps to compute the AMLP if C:

- (1) Compute $(M_i)_{i=1..N}$ the tangential cover of C;
- (2) Decompose $(M_i)_{i=1..N}$ is (α, β) -zones. $(\alpha, \beta \in \{\wedge, \vee\})$
- (3) For each (α, β) -zones, compute the associate part of the AMLP.
- (1) is performed in $O(n)$ using Lachaud, Vialard and de Vieilleville 2007 (DGCI 2005).
- (2) is performed in $O(N)$ where $N \leq n$.
- (3) is performed in $O(n)$ using Melkman 1987 on each (\wedge, \wedge) or (∨, ∨)-zones; while each (∧, ∨) or (∨, ∧)-zones is treated in constant time.

イ何 メ ミ メ イヨ メ

The Combinatorial MLP

 \sim \sim

医毛囊 医牙骨

 \sim

э

• A contour word is the Freeman code of the border of a polyomino.

 \Box

一 4 三 下

• A contour word is the Freeman code of the border of a polyomino.

- A contour word is the Freeman code of the border of a polyomino.
- A quadrant word is an inextendable factor of a contour word over two letters.

- A contour word is the Freeman code of the border of a polyomino.
- A quadrant word is an inextendable factor of a contour word over two letters.

- A contour word is the Freeman code of the border of a polyomino.
- A quadrant word is an inextendable factor of a contour word over two letters.

- A contour word is the Freeman code of the border of a polyomino.
- A quadrant word is an inextendable factor of a contour word over two letters.

- A contour word is the Freeman code of the border of a polyomino.
- A quadrant word is an inextendable factor of a contour word over two letters.

- A contour word is the Freeman code of the border of a polyomino.
- A quadrant word is an inextendable factor of a contour word over two letters.

Theorem (Brlek, Lachaud, P., Reutenauer "DGCI 2008")

An hv-convex polyomino P is digitally if and only if the each of its quadrant words q_i is such that its factorization as decreasing Lyndon words $q_i = l_1^{n_1} l_2^{n_2} \cdots l_k^{n_k}$ contains only Christoffel words. In such case, this factorization coincide with its Euclidian convex.

Christoffel Words

 \leftarrow

4. 重 \sim

 \sim

Christoffel Words

Definition (Borel and Laubie 1993)

 \leftarrow

4. 重 \sim

Christoffel Words

Definition (Borel and Laubie 1993)

 \leftarrow

4. 重 \sim

 \sim

Definition

A word w over an ordered alphabet is a Lyndon word if for all non-empty words u and v :

 $w = uv \implies w < vu.$

(where \lt denotes the lexicographic order.)

Theorem (Lyndon 1950)

Any word w over an ordered alphabet admits a unique factorization as decreasing Lyndon words.

同→ (ヨ→ (ヨ

Definition

A word w over an ordered alphabet is a Lyndon word if for all non-empty words u and v :

 $w = uv \implies w < vu.$

(where < denotes the lexicographic order.)

CURRICULAR CERTIFICATE

Theorem (Lyndon 1950)

Any word w over an ordered alphabet admits a unique factorization as decreasing Lyndon words.

Theorem (Duval 1983)

Given a word w of length n, its factorization as decreasing Lyndon words $w = l_1^{n_1} l_2^{n_2} \cdots l_k^{n_k}$ is computed in $O(n)$ using Duval's algorithm.
Using the repetition properties of Christoffel words, we modify Duval's algorithm in order to stop the computation if the prefix read is not prefix of a Christoffel word.

化重变 化重

 $(1)^3$

∍

0101000000010101011011100333333333333333333222222222222222222 $(1)^3(01011011)$

000000010101011011100333333333333333333222222222222222222 $(1)^3 \cdot (01011011) \cdot (0101)$

000000010101011011100333333333333333333222222222222222222 $(1)^3 \cdot (01011011) \cdot (0101)$

100000010101011011100333333333333333333222222222222222222

 $(1)^3 \cdot (01011011) \cdot (0101)$

10101011011100333333333333333333222222222222222222

(1)³ ·(01011011)·(0101)·(1000000)

11011100333333333333333333222222222222222222

(1)³ ·(01011011)·(0101)·(1000000)·(101010)

11100333333333333333333222222222222222222

(1)³ ·(01011011)·(0101)·(1000000)·(101010)·(110)

01100333333333333333333222222222222222222

(1)³ ·(01011011)·(0101)·(1000000)·(101010)·(110)

00333333333333333333222222222222222222

 $(1)^3 \cdot (01011011) \cdot (0101) \cdot (1000000) \cdot (101010) \cdot (110) \cdot (011)$

Both algorithms AMLP and CMLP have been implemented and are include in the ImaGene project.

http://gforge.liris.cnrs.fr/projects/imagene

Thank you!

目

K 御 と K 君 と K 君 と

4日)