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Polyominoes

Definition

A polyomino is a set of digital squares in the plane such that its
topoligical boundary is a Jordan curve.
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Definition

Given a digital contour C, its inner (resp. outer) polygon Li(C)
(resp. La(C)) is the erosion (resp. dilatation) of the body of /(C)
by the open unit square centrer on (0, 0).
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Minimum Length Polygon

Definition

Given a digital contour C, its inner (resp. outer) polygon Li(C)
(resp. La(C)) is the erosion (resp. dilatation) of the body of /(C)
by the open unit square centrer on (0, 0).
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Minimum Length Polygon
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Definition

The minimum length polygon of C is a subset P € R? such that,
P = arg min Per(A)
A€A,L1(C)CA, OACL2(C)\L1(C)°

where A is the family of simply connected compact sets of R.
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Minimum Length Polygon
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The MLP is:
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Minimum Length Polygon
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Minimum Length Polygon

N

The MLP is:
@ a good length estimator;
@ a good tangent estimator;
@ characteristic of the shape’s convexity;
@ reversible*.
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Relative Convex Hull

Definition
Let U € R%2 and V C U. The set V is said to be U-convex if for
every x,y € V

xyCU = xycV.
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Definition
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Relative Convex Hull

Definition

Let U € R%2 and V C U. The set V is said to be U-convex if for
every x,y € V

Xy CU = xy C V.

Definition

Let V C U C R?, the intersection of all U-convex sets containing
V is called the U-convex hull of V.

o Every set U C R? is U-convex.

@ The usual convexity is the R?-convexity.
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Set-Theoretic MLP

Theorem (Sloboda, Stoer 1994)

The MLP of a digital contour C, is the Lo(C)-convex hull of
Ly(C).

La(C)
Li(C)
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The Arithmetic MLP
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Tangential Cover

Definition

The tangential cover of a discrete contour is the set of its Maximal
Digital Straight Segments (MDSS).
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Tangential Cover

Definition

The tangential cover of a discrete contour is the set of its Maximal
Digital Straight Segments (MDSS).
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@ A stands for a "convex turn”,
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Tangential Cover

Definition

The tangential cover of a discrete contour is the set of its Maximal
Digital Straight Segments (MDSS).

A

N =

A

>—<}

@ A stands for a "convex turn”,
@ V stands for a "concave turn”.
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Tangential Cover

Definition

The tangential cover of a discrete contour is the set of its Maximal
Digital Straight Segments (MDSS).
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Tangential Cover and Convexity

Theorem (Dorksen-Reiter, Debled-Rennesson 2006)

A digital contour is digitally convex iff every couple of con-
secutive MDSS of its tangential cover is made of A-turns.
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Convex, Concave and Inflexion Zones

_

A digital contour C with tangential cover My, M5, ..., M, is uniquely split
into a sequence of closed connected sets with a single point overlap as

follows :
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Convex, Concave and Inflexion Zones

Definition
A convex zone or (A, \)-zone is an inextensible sequence of consecutive
A-turns from (M, Mit1) to (Mj, Mjy1). If i # j, if starts at U;(M;) and
ends at Ur(Mj41).
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Convex, Concave and Inflexion Zones

Definition

A concave zone or (V,V)-zone is an inextensible sequence of consecutive
V-turns from (Mj, Mit1) to (M, Mjy1). If i 5 j, if starts at L;(M;) and
ends at L¢(Mj;1).
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Definition

A concave zone or (V,V)-zone is an inextensible sequence of consecutive
V-turns from (Mj, Mit1) to (M, Mjy1). If i 5 j, if starts at L;(M;) and
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Convex, Concave and Inflexion Zones

N T :\
A convex inflexion zone or (A, V)-zone is a A-turn followed by a V-turn
around a MDSS M;. It starts at Ur(M;) and ends at L, (M;). A concave
inflexion zone or (V, A\)-zone is a V-turn followed by a A-turn around a
MDSS M;. It starts at L¢(M;) and ends at U, (M;).
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Inside and Outside Pixels

e are called inside pixels.
o are called outside pixels.
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Definition of AMLP

The AMLP of C is defined on each
zone according to its type:
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Definition of AMLP

The AMLP of C is defined on each

zone according to its type:

e (A, N) : left side of the left enveloppe,

e (V,V) : right side of the right enveloppe,
e (A, V) : segment joining Ur to Ly,
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Definition of AMLP

The AMLP of C is defined on each
zone according to its type:
(A, ) : left side of the left enveloppe,

) : right side of the right enveloppe,
A, V) : segment joining Ur to L,
V,A)

: segment joining L¢ to U,.

Given a digital contour C, the AMLP of C is the MLP of C.

Proof: show that the AMLP of C is the convex hull of L;(C)
relatively to La(C).
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Computation of AMLP

Algorithm

Three steps to compute the AMLP if C:
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Computation of AMLP

Algorithm

Three steps to compute the AMLP if C:
(1) Compute (M;);=1..n the tangential cover of C;

v

(1) is performed in O(n) using Lachaud, Vialard and de Vieilleville
2007 (DGCI 2005).
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v

(1) is performed in O(n) using Lachaud, Vialard and de Vieilleville
2007 (DGCI 2005).

(2) is performed in O(N) where N < n.
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Computation of AMLP

Algorithm

Three steps to compute the AMLP if C:

(1) Compute (M;);=1..n the tangential cover of C;
(2) Decompose (M;)i=1..n is (o, B)-zones. (a, 5 € {A,V})

(3) For each (a, 3)-zones, compute the associate part of the
AMLP.

(1) is performed in O(n) using Lachaud, Vialard and de Vieilleville
2007 (DGCI 2005).
(

(2) is performed in O(N) where N < n.

(3) is performed in O(n) using Melkman 1987 on each (A, A) or
(V, V)-zones; while each (A, V) or (\V,A)-zones is treated in
constant time.
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The Combinatorial MLP
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Combinatorial View of Digital Convexity

@ A contour word is the Freeman code of the border of a
polyomino.
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Combinatorial View of Digital Convexity

@ A contour word is the Freeman code of the border of a
polyomino.

@ A quadrant word is an inextendable factor of a contour word
over two letters.

o
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Combinatorial View of Digital Convexity

@ A contour word is the Freeman code of the border of a
polyomino.

@ A quadrant word is an inextendable factor of a contour word
over two letters.

Theorem‘(BrIek Lachaud, P., Reutenauer “DGCI 2008" )

An hv-convex polyomino P is digitally if and only if the each of its
quadrant words q; is such that its factorization as decreasing
Lyndon words q; = I{* )% - - - I/* contains only Christoffel words. In
such case, this factorization coincide with its Euclidian convex.
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Christoffel Words

Definition (Borel and Laubie 1993)
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Christoffel Words

Definition (Borel and Laubie 1993)

Cs/7 = 001010010101.
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Lyndon Words

Definition

A word w over an ordered alphabet is a Lyndon word if for all
non-empty words u and v:
w=u = w < vu.

(where < denotes the lexicographic order.)

Theorem (Lyndon 1950)

Any word w over an ordered alphabet admits a unique
factorization as decreasing Lyndon words.
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Lyndon Words

Definition

A word w over an ordered alphabet is a Lyndon word if for all
non-empty words u and v:
w=u = w < vu.

(where < denotes the lexicographic order.)

Theorem (Lyndon 1950)

Any word w over an ordered alphabet admits a unique
factorization as decreasing Lyndon words.

Theorem (Duval 1983)

Given a word w of length n, its factorization as decreasing Lyndon
words w = I* 13 - - - ' is computed in O(n) using Duval’s
algorithm.
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Adapted Version of Duval's Algorithm

Using the repetition properties of Christoffel words, we modify
Duval’s algorithm in order to stop the computation if the prefix
read is not prefix of a Christoffel word.
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Computation of the CMLP
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Computation of the CMLP
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Computation of the CMLP
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Implementation

Both algorithms AMLP and CMLP have been implemented and are
include in the ImaGene project.
http://gforge.liris.cnrs.fr/projects/imagene
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Thank you!
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