On the problem of tiling the plane with a polyomino

Xavier Provençal

Laboratoire de Combinatoire et d'Informatique Mathématique, Université du Québec à Montréal,

$$
12 \text { mars, } 2006
$$

The tiling problem

Outline

(1) The tiling problem
(2) Beauquier-Nivat characterization

3 A fast algorithm to detect exact polyominoes

Introduction to polyominoes

- Discrete plane : \mathbb{Z}^{2}

Introduction to polyominoes

- Discrete plane : \mathbb{Z}^{2}
- Definition : A polyomino is a finite, 4-connected subset of the plane, without holes.

Introduction to polyominoes

- Discrete plane : \mathbb{Z}^{2}
- Definition : A polyomino is a finite, 4-connected subset of the plane, without holes.

Introduction to polyominoes

- Discrete plane : \mathbb{Z}^{2}
- Definition : A polyomino is a finite, 4-connected subset of the plane, without holes.

Introduction to polyominoes

- Discrete plane : \mathbb{Z}^{2}
- Definition : A polyomino is a finite, 4-connected subset of the plane, without holes.
- Notation : Let p be a polyomino and \vec{v} a vector of \mathbb{Z}^{2}, $p_{\vec{v}}$ will denote the image of p by de translation \vec{v}.

General statement of the tiling problem

Definition (Tiling)

A tiling \mathcal{T} of a subset $D \subset \mathbb{Z}^{2}$ by a set of polyominoes \mathcal{P} is a set of couples $(p, \vec{u}) \in \mathcal{P} \times \mathbb{Z}^{2}$ such that :

General statement of the tiling problem

Definition (Tiling)

A tiling \mathcal{T} of a subset $D \subset \mathbb{Z}^{2}$ by a set of polyominoes \mathcal{P} is a set of couples $(p, \vec{u}) \in \mathcal{P} \times \mathbb{Z}^{2}$ such that :

- D is the union of the polyominoes $p_{\vec{u}}$.

General statement of the tiling problem

Definition (Tiling)

A tiling \mathcal{T} of a subset $D \subset \mathbb{Z}^{2}$ by a set of polyominoes \mathcal{P} is a set of couples $(p, \vec{u}) \in \mathcal{P} \times \mathbb{Z}^{2}$ such that :

- D is the union of the polyominoes $p_{\vec{u}}$.
- For any two distinct $(p, \vec{u}),\left(p^{\prime}, \vec{v}\right) \in \mathcal{T}, p_{\vec{u}}$ and $p_{\vec{v}}^{\prime}$ are non-overlapping.

General statement of the tiling problem

Definition (Tiling)

A tiling \mathcal{T} of a subset $D \subset \mathbb{Z}^{2}$ by a set of polyominoes \mathcal{P} is a set of couples $(p, \vec{u}) \in \mathcal{P} \times \mathbb{Z}^{2}$ such that :

- D is the union of the polyominoes $p_{\vec{u}}$.
- For any two distinct $(p, \vec{u}),\left(p^{\prime}, \vec{v}\right) \in \mathcal{T}, p_{\vec{u}}$ and $p_{\vec{v}}^{\prime}$ are non-overlapping.

Definition (The Tiling Problem)

Given a set of polyominoes \mathcal{P} and a subset $D \subset \mathbb{Z}^{2}$.
Does D admits a tiling by \mathcal{P}.

The tiling problem A fast algorithm to detect exact polyominoes

Example

The tiling problem A fast algorithm to detect exact polyominoes

Example

				-	,									

The tiling problem
Beauquier-Nivat characterization A fast algorithm to detect exact polyominoes

Finite case

Remark

The tiling problem with D finite is in NP.

Finite case

Remark

The tiling problem with D finite is in NP.

Remark

The tiling problem with D finite and $\mathcal{P}=\{\boldsymbol{\theta}, \boldsymbol{\square}\}$ is in P.

Finite case

Remark

The tiling problem with D finite is in NP.

Remark

The tiling problem with D finite and $\mathcal{P}=\{日, \varpi\}$ is in P.

Theorem (Garey, Johnson and Papadimitriou)

The tiling problem with D finite and $\mathcal{P}=\{$ 日, $\boldsymbol{\square}\}$ is NP-Complete.

Infinite case

We concider the case where $D=\mathbb{Z}^{2}$ and \mathcal{P} is finite.

Infinite case

We concider the case where $D=\mathbb{Z}^{2}$ and \mathcal{P} is finite.

Definition (Periodic Tiling)

A tiling \mathcal{T} is periodic if there exist two linearly independant vectors \vec{u} and \vec{v} such that \mathcal{T} is not changed by the corresponding translations.

Infinite case

We concider the case where $D=\mathbb{Z}^{2}$ and \mathcal{P} is finite.

Definition (Periodic Tiling)

A tiling \mathcal{T} is periodic if there exist two linearly independant vectors \vec{u} and \vec{v} such that \mathcal{T} is not changed by the corresponding translations.

Definition (Half-Periodic Tiling)

A tiling \mathcal{T} is half-periodic if there exists a vectors \vec{u} such that \mathcal{T} is not changed by the corresponding translation.

Example

Periodic tiling

Half-periodic tiling

The tiling problem

Half-Periodic implies periodic

Remark

If there is an half-periodic tiling of the plane by \mathcal{P}, then there is also a periodic one.

The tiling problem

Half-Periodic implies periodic

Remark

If there is an half-periodic tiling of the plane by \mathcal{P}, then there is also a periodic one.

The tiling problem Beauquier-Nivat characterization A fast algorithm to detect exact polyominoes

Half-Periodic implies periodic

Remark

If there is an half-periodic tiling of the plane by \mathcal{P}, then there is also a periodic one.

The tiling problem

Half-Periodic implies periodic

Remark

If there is an half-periodic tiling of the plane by \mathcal{P}, then there is also a periodic one.

The tiling problem

Half-Periodic implies periodic

Remark

If there is an half-periodic tiling of the plane by \mathcal{P}, then there is also a periodic one.

The tiling problem

Half-Periodic implies periodic

Remark

If there is an half-periodic tiling of the plane by \mathcal{P}, then there is also a periodic one.

The tiling problem
Beauquier-Nivat characterization A fast algorithm to detect exact polyominoes

Nonperiodic tilings

Theorem (Berger, 1966)

The tiling problem with \mathcal{P} finite and $D=\mathbb{Z}^{2}$ is undecidable.

Nonperiodic tilings

Theorem (Berger, 1966)

The tiling problem with \mathcal{P} finite and $D=\mathbb{Z}^{2}$ is undecidable.

Corollary

There are some finite sets \mathcal{P} such that tilings of the plane by \mathcal{P} do exist and are all nonperiodic.

The tiling problem
Beauquier-Nivat characterization A fast algorithm to detect exact polyominoes

Tilings with one polyomino

Definition

A polyomino p is exact if the set $\mathcal{P}=\{p\}$ tiles the plane.

Tilings with one polyomino

Definition

A polyomino p is exact if the set $\mathcal{P}=\{p\}$ tiles the plane.

Definition

A tiling of the plane \mathcal{T} by an exact polyomino p is regular if there exist two vectors \vec{u} and \vec{v} such that

$$
\mathcal{T}=\left\{(p, i \vec{u}+j \vec{v}) \mid i, j \in \mathbb{Z}^{2}\right\}
$$

Examples

Half-periodic tiling

Periodic tiling

Regular tiling

Tilings with one polyomino

Theorem (Wijshoff and Van Leeuven, 1984)

If a polyomino p tiles the plane, then there exists a regular tiling of the plane by p.

Tilings with one polyomino

Theorem (Wisshoff and Van Leeuven, 1984)

If a polyomino p tiles the plane, then there exists a regular tiling of the plane by p.

Corollary

The tiling problem with $\mathcal{P}=\{p\}$ and $D=\mathbb{Z}^{2}$ is decidable in polynomial time.

The tiling problem

Example

Example

The tiling problem

Polyominoes and words
Definitions
Surroundings and tilings
Surroundings and the factorization

Outline

(1) The tiling problem

(2) Beauquier-Nivat characterization
(3) A fast algorithm to detect exact polyominoes

Polyominoes and words
Definitions
Surroundings and tilings
Surroundings and the factorization

Coding the boundary of a polyomino

$$
\Sigma=\{a, \bar{a}, b, \bar{b}\}
$$

Polyominoes and words
Definitions
Surroundings and tilings
Surroundings and the factorization

Coding the boundary of a polyomino

$$
\Sigma=\{a, \bar{a}, b, \bar{b}\}
$$

$$
\begin{array}{|ll|}
\hline a \rightarrow & b \uparrow \\
\bar{a} \leftarrow & \bar{b} \downarrow \\
\hline
\end{array}
$$

$w=$

Polyominoes and words

Coding the boundary of a polyomino

$$
\Sigma=\{a, \bar{a}, b, \bar{b}\}
$$

$$
\begin{array}{|ll|}
\hline a \rightarrow & b \uparrow \\
\bar{a} \leftarrow & \bar{b} \downarrow \\
\hline
\end{array}
$$

$w=a$

Polyominoes and words

Coding the boundary of a polyomino

$$
\Sigma=\{a, \bar{a}, b, \bar{b}\}
$$

$$
\begin{array}{|ll|}
\hline a \rightarrow & b \uparrow \\
\bar{a} \leftarrow & \bar{b} \downarrow \\
\hline
\end{array}
$$

$$
w=a a
$$

Polyominoes and words

Coding the boundary of a polyomino

$$
\Sigma=\{a, \bar{a}, b, \bar{b}\}
$$

$$
\begin{array}{|ll|}
\hline a \rightarrow & b \uparrow \\
\bar{a} \leftarrow & \bar{b} \downarrow \\
\hline
\end{array}
$$

$w=a a a$

Polyominoes and words

Coding the boundary of a polyomino

$$
\Sigma=\{a, \bar{a}, b, \bar{b}\}
$$

$$
\begin{array}{|ll|}
\hline a \rightarrow & b \uparrow \\
\bar{a} \leftarrow & \bar{b} \downarrow \\
\hline
\end{array}
$$

$w=a a a a$

Polyominoes and words

Coding the boundary of a polyomino

$$
\Sigma=\{a, \bar{a}, b, \bar{b}\}
$$

$$
\begin{array}{|ll|}
\hline a \rightarrow & b \uparrow \\
\bar{a} \leftarrow & \bar{b} \downarrow \\
\hline
\end{array}
$$

$$
w=a a a a b
$$

Polyominoes and words

Coding the boundary of a polyomino

$$
\Sigma=\{a, \bar{a}, b, \bar{b}\}
$$

$$
\begin{array}{|ll|}
\hline a \rightarrow & b \uparrow \\
\bar{a} \leftarrow & \bar{b} \downarrow \\
\hline
\end{array}
$$

$w=a \operatorname{a} a b \bar{a}$

Polyominoes and words

Coding the boundary of a polyomino

$$
\Sigma=\{a, \bar{a}, b, \bar{b}\}
$$

$$
\begin{array}{|ll|}
\hline a \rightarrow & b \uparrow \\
\bar{a} \leftarrow & \bar{b} \downarrow \\
\hline
\end{array}
$$

$w=a a a b \bar{a} b$

Polyominoes and words

Coding the boundary of a polyomino

$$
\Sigma=\{a, \bar{a}, b, \bar{b}\}
$$

$$
\begin{array}{|ll|}
\hline a \rightarrow & b \uparrow \\
\bar{a} \leftarrow & \bar{b} \downarrow \\
\hline
\end{array}
$$

$w=a a \operatorname{a} b \bar{a} b \bar{a}$

Polyominoes and words

Coding the boundary of a polyomino

$$
\Sigma=\{a, \bar{a}, b, \bar{b}\}
$$

$$
\begin{array}{|ll|}
\hline a \rightarrow & b \uparrow \\
\bar{a} \leftarrow & \bar{b} \downarrow \\
\hline
\end{array}
$$

$w=a a \operatorname{a} b \bar{a} b \bar{a} \bar{a}$

Polyominoes and words

Coding the boundary of a polyomino

$$
\Sigma=\{a, \bar{a}, b, \bar{b}\}
$$

$$
\begin{array}{|lll}
\hline a \rightarrow & b \uparrow \\
\bar{a} \leftarrow & \bar{b} \downarrow \\
\hline
\end{array}
$$

$$
w=a a \operatorname{a} b \bar{a} b \bar{a} \bar{a} \bar{b}
$$

Polyominoes and words

Coding the boundary of a polyomino

$$
\Sigma=\{a, \bar{a}, b, \bar{b}\}
$$

$$
\begin{array}{|lll}
\hline a \rightarrow & b \uparrow \\
\bar{a} \leftarrow & \bar{b} \downarrow \\
\hline
\end{array}
$$

$$
w=a \text { a a a } b \bar{a} b \bar{a} \bar{a} \bar{b} \bar{a}
$$

Polyominoes and words

Coding the boundary of a polyomino

$$
\Sigma=\{a, \bar{a}, b, \bar{b}\}
$$

$$
\begin{array}{|lll}
\hline a \rightarrow & b \uparrow \\
\bar{a} \leftarrow & \bar{b} \downarrow \\
\hline
\end{array}
$$

$$
w=a a a a b \bar{a} b \bar{a} \bar{a} \bar{b} \bar{a} \bar{b} .
$$

Coding the boundary of a polyomino

$$
\Sigma=\{a, \bar{a}, b, \bar{b}\}
$$

$$
\begin{array}{ll}
\hline a \rightarrow & b \uparrow \\
\bar{a} \leftarrow & \bar{b} \downarrow \\
\hline
\end{array}
$$

Notation :

$w \equiv w^{\prime}$ notes that w and w^{\prime} are conjugate.

There exist $u, v \in \Sigma^{*}$ such that:

$$
w=u v \text { and } w^{\prime}=v u
$$

$$
w=a \operatorname{a} a \operatorname{a} \bar{a} b \bar{a} \bar{a} \bar{b} \bar{a} \bar{b} .
$$

Coding the boundary of a polyomino

$$
\Sigma=\{a, \bar{a}, b, \bar{b}\}
$$

$$
\begin{array}{ll}
\hline a \rightarrow & b \uparrow \\
\bar{a} \leftarrow & \bar{b} \downarrow \\
\hline
\end{array}
$$

Notation :

$w \equiv w^{\prime}$ notes that w and w^{\prime} are conjugate.

There exist $u, v \in \Sigma^{*}$ such that:

$$
w=u v \text { and } w^{\prime}=v u
$$

$$
w \equiv a \text { a a a } b \bar{a} b \bar{a} \bar{a} \bar{b} \bar{a} \bar{b} .
$$

The tiling problem
Beauquier-Nivat characterization A fast algorithm to detect exact polyominoes

Polyominoes and words
Definitions
Surroundings and tilings
Surroundings and the factorization

Characterization

Definition
 Let ${ }^{\wedge}$ be the involutive antimorphism defined $a s^{\wedge}={ }^{-}{ }^{\sim}$.

Polyominoes and words

Characterization

Definition

Let ${ }^{\wedge}$ be the involutive antimorphism defined $a s^{\wedge}={ }^{-}{ }^{\sim}$.

Let $u, v, w \in \Sigma^{*}=\{a, \bar{a}, b, \bar{b}\}^{*}$ such that $w=u v$, $\widehat{w}=\widehat{u v}=\widehat{v} \widehat{u}$ and $w=\widehat{\widehat{w}}$.

Polyominoes and words

Characterization

Definition

Let^ be the involutive antimorphism defined $a s^{\wedge}={ }^{-}{ }^{\sim}$.

Let $u, v, w \in \Sigma^{*}=\{a, \bar{a}, b, \bar{b}\}^{*}$ such that $w=u v$, $\widehat{w}=\widehat{u v}=\widehat{v} \widehat{u}$ and $w=\widehat{\hat{w}}$.

$$
u=a a b a \bar{b} a b
$$

Polyominoes and words

Characterization

Definition

Let ${ }^{\wedge}$ be the involutive antimorphism defined $a s^{\wedge}={ }^{-}{ }^{\sim}$.

Let $u, v, w \in \Sigma^{*}=\{a, \bar{a}, b, \bar{b}\}^{*}$ such that $w=u v$, $\widehat{w}=\widehat{u v}=\widehat{v} \widehat{u}$ and $w=\widehat{\hat{w}}$.

$$
u=a a b a \bar{b} a b
$$

Polyominoes and words

Characterization

Definition

Let^ be the involutive antimorphism defined $a s^{\wedge}={ }^{-}{ }^{\sim}$.

Let $u, v, w \in \Sigma^{*}=\{a, \bar{a}, b, \bar{b}\}^{*}$ such that $w=u v$, $\widehat{w}=\widehat{u v}=\widehat{v} \widehat{u}$ and $w=\widehat{\hat{w}}$.

$$
u=a a b a \bar{b} a b
$$

Polyominoes and words

Characterization

Definition

Let^ be the involutive antimorphism defined $a s^{\wedge}={ }^{-}{ }^{\sim}$.

Let $u, v, w \in \Sigma^{*}=\{a, \bar{a}, b, \bar{b}\}^{*}$ such that $w=u v$, $\widehat{w}=\widehat{u v}=\widehat{v} \widehat{u}$ and $w=\widehat{\hat{w}}$.

$$
u=a a b a \bar{b} a b
$$

Characterization

Definition

Let^ be the involutive antimorphism defined $a s^{\wedge}={ }^{-}{ }^{\sim}$.

Let $u, v, w \in \Sigma^{*}=\{a, \bar{a}, b, \bar{b}\}^{*}$ such that $w=u v$, $\widehat{w}=\widehat{u v}=\widehat{v} \widehat{u}$ and $w=\widehat{\hat{w}}$.

$$
u=a a b a \bar{b} a b
$$

Characterization

Definition

Let^ be the involutive antimorphism defined $a s^{\wedge}={ }^{-}{ }^{\sim}$.

Let $u, v, w \in \Sigma^{*}=\{a, \bar{a}, b, \bar{b}\}^{*}$ such that $w=u v$, $\widehat{w}=\widehat{u v}=\widehat{v} \widehat{u}$ and $w=\widehat{\hat{w}}$.

$$
u=a \operatorname{a} b \text { a } \bar{b} \text { a } b
$$

Characterization

Definition

Let^ be the involutive antimorphism defined $a s^{\wedge}={ }^{-}{ }^{\sim}$.

Let $u, v, w \in \Sigma^{*}=\{a, \bar{a}, b, \bar{b}\}^{*}$ such that $w=u v$, $\widehat{w}=\widehat{u v}=\widehat{v} \widehat{u}$ and $w=\widehat{\hat{w}}$.

$$
u=a a b a \bar{b} a b
$$

Characterization

Definition

Let ${ }^{\wedge}$ be the involutive antimorphism defined $a s^{\wedge}={ }^{-}{ }^{\sim}$.

Let $u, v, w \in \Sigma^{*}=\{a, \bar{a}, b, \bar{b}\}^{*}$ such that $w=u v$, $\widehat{w}=\widehat{u v}=\widehat{v} \widehat{u}$ and $w=\widehat{\hat{w}}$.

$$
u=a \text { a } b a \bar{b} a b
$$

Characterization

Definition

Let ${ }^{\wedge}$ be the involutive antimorphism defined $a s^{\wedge}={ }^{-}{ }^{\sim}$.

Let $u, v, w \in \Sigma^{*}=\{a, \bar{a}, b, \bar{b}\}^{*}$ such that $w=u v$, $\widehat{w}=\widehat{u v}=\widehat{v} \widehat{u}$ and $w=\widehat{\hat{w}}$.

$$
u=a \operatorname{a} b \text { a } \bar{b} \text { a } b
$$

Characterization

Definition

Let ${ }^{\wedge}$ be the involutive antimorphism defined $a s^{\wedge}={ }^{-}{ }^{\sim}$.

Let $u, v, w \in \Sigma^{*}=\{a, \bar{a}, b, \bar{b}\}^{*}$ such that $w=u v$, $\widehat{w}=\widehat{u v}=\widehat{v} \widehat{u}$ and $w=\widehat{\hat{w}}$.

$$
\begin{aligned}
& u=a a b a \bar{b} a b \\
& \widehat{u}=\bar{b} \bar{a} b \bar{a} \bar{b} \bar{a} \bar{a}
\end{aligned}
$$

Characterization

Definition

Let ${ }^{\wedge}$ be the involutive antimorphism defined $a s^{\wedge}={ }^{-}{ }^{\sim}$.

Let $u, v, w \in \Sigma^{*}=\{a, \bar{a}, b, \bar{b}\}^{*}$ such that $w=u v$, $\widehat{w}=\widehat{u v}=\widehat{v} \widehat{u}$ and $w=\widehat{\hat{w}}$.

$$
\begin{aligned}
& u=a \operatorname{a} b a \bar{b} a b \\
& \widehat{u}=\bar{b} \bar{a} b \bar{a} \bar{b} \bar{a} \bar{a}
\end{aligned}
$$

Characterization

Definition

Let ${ }^{\wedge}$ be the involutive antimorphism defined $a s^{\wedge}={ }^{-}{ }^{\sim}$.

Let $u, v, w \in \Sigma^{*}=\{a, \bar{a}, b, \bar{b}\}^{*}$ such that $w=u v$, $\widehat{w}=\widehat{u v}=\widehat{v} \widehat{u}$ and $w=\widehat{\hat{w}}$.

$$
\begin{aligned}
& u=a \operatorname{a} b a \bar{b} a b \\
& \widehat{u}=\bar{b} \bar{a} b \bar{a} \bar{b} \bar{a} \bar{a}
\end{aligned}
$$

Characterization

Definition

Let ${ }^{\wedge}$ be the involutive antimorphism defined $a s^{\wedge}={ }^{-}{ }^{\sim}$.

Let $u, v, w \in \Sigma^{*}=\{a, \bar{a}, b, \bar{b}\}^{*}$ such that $w=u v$, $\widehat{w}=\widehat{u v}=\widehat{v} \widehat{u}$ and $w=\widehat{\hat{w}}$.

$$
\begin{aligned}
& u=a \text { a } b \text { a } \bar{b} a b \\
& \widehat{u}=\bar{b} \bar{a} b \bar{a} \bar{b} \bar{a} \bar{a}
\end{aligned}
$$

Characterization

Definition

Let ${ }^{\wedge}$ be the involutive antimorphism defined $a s^{\wedge}={ }^{-}{ }^{\sim}$.

Let $u, v, w \in \Sigma^{*}=\{a, \bar{a}, b, \bar{b}\}^{*}$ such that $w=u v$, $\widehat{w}=\widehat{u v}=\widehat{v} \widehat{u}$ and $w=\widehat{\hat{w}}$.

$$
\begin{aligned}
& u=a \operatorname{a} b a \bar{b} a b \\
& \widehat{u}=\bar{b} \bar{a} b \bar{a} \bar{b} \bar{a} \bar{a}
\end{aligned}
$$

Characterization

Definition

Let ${ }^{\wedge}$ be the involutive antimorphism defined $a s^{\wedge}={ }^{-}{ }^{\sim}$.

Let $u, v, w \in \Sigma^{*}=\{a, \bar{a}, b, \bar{b}\}^{*}$ such that $w=u v$, $\widehat{w}=\widehat{u v}=\widehat{v} \widehat{u}$ and $w=\widehat{\hat{w}}$.

$$
\begin{aligned}
& u=a \operatorname{a} b a \bar{b} a b \\
& \widehat{u}=\bar{b} \bar{a} b \bar{a} \bar{b} \bar{a} \bar{a}
\end{aligned}
$$

Characterization

Definition

Let ${ }^{\wedge}$ be the involutive antimorphism defined $a s^{\wedge}={ }^{-}{ }^{\sim}$.

Let $u, v, w \in \Sigma^{*}=\{a, \bar{a}, b, \bar{b}\}^{*}$ such that $w=u v$, $\widehat{w}=\widehat{u v}=\widehat{v} \widehat{u}$ and $w=\widehat{\hat{w}}$.

$$
\begin{aligned}
& u=a \operatorname{a} b a \bar{b} a b \\
& \widehat{u}=\bar{b} \bar{a} b \bar{a} \bar{b} \bar{a} \bar{a}
\end{aligned}
$$

Characterization

Definition

Let ${ }^{\wedge}$ be the involutive antimorphism defined $a s^{\wedge}={ }^{-}{ }^{\sim}$.

Let $u, v, w \in \Sigma^{*}=\{a, \bar{a}, b, \bar{b}\}^{*}$ such that $w=u v$, $\widehat{w}=\widehat{u v}=\widehat{v} \widehat{u}$ and $w=\widehat{\hat{w}}$.

$$
\begin{aligned}
& u=a \operatorname{a} b a \bar{b} a b \\
& \widehat{u}=\bar{b} \bar{a} b \bar{a} \bar{b} \bar{a} \bar{a}
\end{aligned}
$$

Characterization

Definition

Let ${ }^{\wedge}$ be the involutive antimorphism defined $a s^{\wedge}={ }^{-}{ }^{\sim}$.

Let $u, v, w \in \Sigma^{*}=\{a, \bar{a}, b, \bar{b}\}^{*}$ such that $w=u v$, $\widehat{w}=\widehat{u v}=\widehat{v} \widehat{u}$ and $w=\widehat{\hat{w}}$.

$$
\begin{aligned}
& u=a \operatorname{a} b a \bar{b} a b \\
& \widehat{u}=\bar{b} \bar{a} b \bar{a} \bar{b} \bar{a} \bar{a}
\end{aligned}
$$

Characterization

Definition

Let ${ }^{\wedge}$ be the involutive antimorphism defined $a s^{\wedge}={ }^{-}{ }^{\sim}$.

Let $u, v, w \in \Sigma^{*}=\{a, \bar{a}, b, \bar{b}\}^{*}$ such that $w=u v$, $\widehat{w}=\widehat{u v}=\widehat{v} \widehat{u}$ and $w=\widehat{\hat{w}}$.

$$
\begin{aligned}
& u=a \operatorname{a} b a \bar{b} a b \\
& \widehat{u}=\bar{b} \bar{a} b \bar{a} \bar{b} \bar{a} \bar{a}
\end{aligned}
$$

Theorem (Beauquier and Nivat, 1991)
A polyomino p is exact if and only its boundary word $w \equiv X Y Z \widehat{X} \widehat{Y} \widehat{Z}$ for some $X, Y, Z \in \Sigma^{*}$.

Neighbouring

Definition

Two polyominoes p and q are simply neighbouring if

- They are adjacent.
- They don't overlap.
- They don't form a hole.

Neighbouring

Definition

Two polyominoes p and q are simply neighbouring if

- They are adjacent.
- They don't overlap.
- They don't form a hole.

Triad

Definition

Three polyominoes p, q and r form a triad if

- They are two by two simply neighbouring.
- They don't form a hole.

Triad

Definition

Three polyominoes p, q and r form a triad if

- They are two by two simply neighbouring.
- They don't form a hole.

Surrounding

Definition

A surrounding of the polyomino p is an ordered sequence of translated copies $\left(p_{0}, p_{1}, \ldots, p_{k-1}\right)$ such that for every i from 0 to k, the polyominoes p, p_{i} and p_{i+1} form a triad.

Surrounding

Definition

A surrounding of the polyomino p is an ordered sequence of translated copies $\left(p_{0}, p_{1}, \ldots, p_{k-1}\right)$ such that for every i from 0 to k, the polyominoes p, p_{i} and p_{i+1} form a triad.

Surrounding

Definition

A surrounding of the polyomino p is an ordered sequence of translated copies $\left(p_{0}, p_{1}, \ldots, p_{k-1}\right)$ such that for every i from 0 to k, the polyominoes p, p_{i} and p_{i+1} form a triad.

P	P_{0}

Surrounding

Definition

A surrounding of the polyomino p is an ordered sequence of translated copies $\left(p_{0}, p_{1}, \ldots, p_{k-1}\right)$ such that for every i from 0 to k, the polyominoes p, p_{i} and p_{i+1} form a triad.

Surrounding

Definition

A surrounding of the polyomino p is an ordered sequence of translated copies $\left(p_{0}, p_{1}, \ldots, p_{k-1}\right)$ such that for every i from 0 to k, the polyominoes p, p_{i} and p_{i+1} form a triad.

Surrounding

Definition

A surrounding of the polyomino p is an ordered sequence of translated copies $\left(p_{0}, p_{1}, \ldots, p_{k-1}\right)$ such that for every i from 0 to k, the polyominoes p, p_{i} and p_{i+1} form a triad.

Surrounding

Definition

A surrounding of the polyomino p is an ordered sequence of translated copies $\left(p_{0}, p_{1}, \ldots, p_{k-1}\right)$ such that for every i from 0 to k, the polyominoes p, p_{i} and p_{i+1} form a triad.

Surroundings and tilings

Proposition

A polyomino p is exact if and only if it admits a surrounding.

Surroundings and tilings

Proposition

A polyomino p is exact if and only if it admits a surrounding.

Surroundings and tilings

Proposition

A polyomino p is exact if and only if it admits a surrounding.

Surroundings and tilings

Proposition

A polyomino p is exact if and only if it admits a surrounding.

The tiling problem

Polyominoes and words
Surroundings and tilings
Surroundings and the factorization

Example

Polyominoes and words
Surroundings and tilings
Surroundings and the factorization

Example

The tiling problem

Example

Example

The tiling problem

Example

Surroundings and the factorization

Proposition

A polyomino p admits a surrounding if and only if its boundary word $w \equiv X Y Z \widehat{X} \widehat{Y} \widehat{Z}$ for some $X, Y, Z \in \Sigma^{*}$.

Surroundings and the factorization

Proposition

A polyomino p admits a surrounding if and only if its boundary word $w \equiv X Y Z \widehat{X} \widehat{Y} \widehat{Z}$ for some $X, Y, Z \in \Sigma^{*}$.

Surroundings and the factorization

Proposition

A polyomino p admits a surrounding if and only if its boundary word $w \equiv X Y Z \widehat{X} \widehat{Y} \widehat{Z}$ for some $X, Y, Z \in \Sigma^{*}$.

Surroundings and the factorization

Proposition

A polyomino p admits a surrounding if and only if its boundary word $w \equiv X Y Z \widehat{X} \widehat{Y} \widehat{Z}$ for some $X, Y, Z \in \Sigma^{*}$.

Surroundings and the factorization

Proposition

A polyomino p admits a surrounding if and only if its boundary word $w \equiv X Y Z \widehat{X} \widehat{Y} \widehat{Z}$ for some $X, Y, Z \in \Sigma^{*}$.

Surroundings and the factorization

Proposition

A polyomino p admits a surrounding if and only if its boundary word $w \equiv X Y Z \widehat{X} \widehat{Y} \widehat{Z}$ for some $X, Y, Z \in \Sigma^{*}$.

Surroundings and the factorization

Proposition

A polyomino p admits a surrounding if and only if its boundary word $w \equiv X Y Z \widehat{X} \widehat{Y} \widehat{Z}$ for some $X, Y, Z \in \Sigma^{*}$.

Surroundings and the factorization

Proposition

A polyomino p admits a surrounding if and only if its boundary word $w \equiv X Y Z \widehat{X} \widehat{Y} \widehat{Z}$ for some $X, Y, Z \in \Sigma^{*}$.

Surroundings and the factorization

Proposition

A polyomino p admits a surrounding if and only if its boundary word $w \equiv X Y Z \widehat{X} \widehat{Y} \widehat{Z}$ for some $X, Y, Z \in \Sigma^{*}$.

Surroundings and the factorization

Proposition

A polyomino p admits a surrounding if and only if its boundary word $w \equiv X Y Z \widehat{X} \widehat{Y} \widehat{Z}$ for some $X, Y, Z \in \Sigma^{*}$.

Surroundings and the factorization

Proposition

A polyomino p admits a surrounding if and only if its boundary word $w \equiv X Y Z \widehat{X} \widehat{Y} \widehat{Z}$ for some $X, Y, Z \in \Sigma^{*}$.

Surroundings and the factorization

Proposition

A polyomino p admits a surrounding if and only if its boundary word $w \equiv X Y Z \widehat{X} \widehat{Y} \widehat{Z}$ for some $X, Y, Z \in \Sigma^{*}$.

Surroundings and the factorization

Proposition

A polyomino p admits a surrounding if and only if its boundary word $w \equiv X Y Z \widehat{X} \widehat{Y} \widehat{Z}$ for some $X, Y, Z \in \Sigma^{*}$.

Surroundings and the factorization

Proposition

A polyomino p admits a surrounding if and only if its boundary word $w \equiv X Y Z \widehat{X} \widehat{Y} \widehat{Z}$ for some $X, Y, Z \in \Sigma^{*}$.

Surroundings and the factorization

Proposition

A polyomino p admits a surrounding if and only if its boundary word $w \equiv X Y Z \widehat{X} \widehat{Y} \widehat{Z}$ for some $X, Y, Z \in \Sigma^{*}$.

Surroundings and the factorization

Proposition

A polyomino p admits a surrounding if and only if its boundary word $w \equiv X Y Z \widehat{X} \widehat{Y} \widehat{Z}$ for some $X, Y, Z \in \Sigma^{*}$.

Pseudo-square and pseudo-hexagons

Definition

An exact polyomino p with Beauquier-Nivat factorization $X Y Z \widehat{X} \widehat{Y} \widehat{Z}$ is called a pseudo-square if one of the factors X, Y, Z is the empty word. It is called a pseudo-hexagon otherwise.

Pseudo-square and pseudo-hexagons

Definition

An exact polyomino p with Beauquier-Nivat factorization $X Y Z \widehat{X} \widehat{Y} \widehat{Z}$ is called a pseudo-square if one of the factors X, Y, Z is the empty word. It is called a pseudo-hexagon otherwise.

Pseudo-hexagon $w \equiv X Y Z \widehat{X} \widehat{Y} \widehat{Z}$.

Pseudo-square $w \equiv X Y \widehat{X} \widehat{Y}$.

Complexity

Let n be the length of the word coding the boundary of a polyomino p.

Remark

The Beauquier-Nivat characterization provides a naive algorithm to determine if p is exact in $\mathcal{O}\left(n^{4}\right)$.

Complexity

Let n be the length of the word coding the boundary of a polyomino p.

Remark

The Beauquier-Nivat characterization provides a naive algorithm to determine if p is exact in $\mathcal{O}\left(n^{4}\right)$.

Remark

This problem admits $\Omega(n)$ as a lower bound.

Complexity

Let n be the length of the word coding the boundary of a polyomino p.

Remark

The Beauquier-Nivat characterization provides a naive algorithm to determine if p is exact in $\mathcal{O}\left(n^{4}\right)$.

Remark

This problem admits $\Omega(n)$ as a lower bound.

Theorem (Gambini and Vuillon, 2003)

There is an algorithm to test if a polyomino satisfies the Beauquier-Nivat characterization in $\mathcal{O}\left(n^{2}\right)$.

Outline

(1) The tiling problem

(2) Beauquier-Nivat characterization
(3) A fast algorithm to detect exact polyominoes

Admissible factors

Definition

Let A be a factor of the word w coding a polyomino p. A is admissible if

- $w \equiv A x \widehat{A} y$, for x, y such that $|x|=|y|$.
- A is maximal, that is, $\operatorname{first}(x) \neq \overline{\operatorname{last}(x)}$ and $\operatorname{first}(y) \neq \overline{\operatorname{last}(y)}$.

Admissible factors

Proposition

Let \mathcal{A} be the set of all admissible factors overlapping a position α in w and $\widehat{\mathcal{A}}$ be the set of their respective homologous factors. Then, there is at least one position in w that is not covered by any element of $\mathcal{A} \cup \widehat{\mathcal{A}}$.

Admissible factors

Proposition

Let \mathcal{A} be the set of all admissible factors overlapping a position α in w and $\widehat{\mathcal{A}}$ be the set of their respective homologous factors. Then, there is at least one position in w that is not covered by any element of $\mathcal{A} \cup \widehat{\mathcal{A}}$.

Admissible factors

Proposition

Let \mathcal{A} be the set of all admissible factors overlapping a position α in w and $\widehat{\mathcal{A}}$ be the set of their respective homologous factors. Then, there is at least one position in w that is not covered by any element of $\mathcal{A} \cup \widehat{\mathcal{A}}$.

Admissible factors

Proposition

Let \mathcal{A} be the set of all admissible factors overlapping a position α in w and $\widehat{\mathcal{A}}$ be the set of their respective homologous factors. Then, there is at least one position in w that is not covered by any element of $\mathcal{A} \cup \widehat{\mathcal{A}}$.

Admissible factors

Proposition

Let \mathcal{A} be the set of all admissible factors overlapping a position α in w and $\widehat{\mathcal{A}}$ be the set of their respective homologous factors. Then, there is at least one position in w that is not covered by any element of $\mathcal{A} \cup \widehat{\mathcal{A}}$.

Admissible factors, detection and properties Detecting pseudo-squares Detection pseudo-hexagons

Admissible factors

Admissible factors, detection and properties
Detecting pseudo-squares
Detection pseudo-hexagons

Admissible factors

Admissible factors, detection and properties
Detecting pseudo-squares
Detection pseudo-hexagons

Admissible factors

1. $|x|=|y|$

Admissible factors, detection and properties
Detecting pseudo-squares
Detection pseudo-hexagons

Admissible factors

1. $|x|=|y|$

Admissible factors, detection and properties
Detecting pseudo-squares
Detection pseudo-hexagons

Admissible factors

1. $|x|=|y|$

Admissible factors, detection and properties Detecting pseudo-squares Detection pseudo-hexagons

Admissible factors

1. $|x|=|y|$

$$
w \equiv \widehat{x} U \times V \hat{x} \widehat{U} \times \widehat{V}
$$

Admissible factors

1. $|x|=|y|$

$$
w \equiv \widehat{x} U \times V \widehat{x} \widehat{U} \times \widehat{V}
$$

Lemma (Dorat and Nivat, 2003) (Brlek, Labelle and Lacasse, 2005)

In a non-intersecting closed path on a square lattice,

$$
\#(\text { left turns })-\#(\text { right turns })=4 .
$$

Admissible factors

1. $|x|=|y|$

$$
w \equiv \underset{V^{\hat{x}} U \times V \widehat{x}}{U} \times \widehat{V} .
$$

Lemma (Dorat and Nivat, 2003) (Brlek, Labelle and Lacasse, 2005)
In a non-intersecting closed path on a square lattice,

$$
\#(\text { left turns })-\#(\text { right turns })=4 .
$$

Admissible factors

1. $|x|=|y|$

$$
w \equiv \widehat{x}_{\psi} U \times V \hat{x} \widehat{U} \times \widehat{V} .
$$

Lemma (Dorat and Nivat, 2003) (Brlek, Labelle and Lacasse, 2005)
In a non-intersecting closed path on a square lattice,

$$
\#(\text { left turns })-\#(\text { right turns })=4 .
$$

Admissible factors

1. $|x|=|y|$

Lemma (Dorat and Nivat, 2003) (Brlek, Labelle and Lacasse, 2005)
In a non-intersecting closed path on a square lattice,

$$
\#(\text { left turns })-\#(\text { right turns })=4 .
$$

Admissible factors

1. $|x|=|y|$

$$
w \equiv \underset{\psi \psi x}{\widehat{x} U}{ }_{\psi}^{\hat{x}} \underset{\psi}{\widehat{U}} \times \widehat{V} .
$$

Lemma (Dorat and Nivat, 2003) (Brlek, Labelle and Lacasse, 2005)
In a non-intersecting closed path on a square lattice, $\#($ left turns $)-\#($ right turns $)=4$.

Admissible factors

1. $|x|=|y|$

Lemma (Dorat and Nivat, 2003) (Brlek, Labelle and Lacasse, 2005)
In a non-intersecting closed path on a square lattice,

$$
\#(\text { left turns })-\#(\text { right turns })=4 .
$$

Admissible factors

1. $|x|=|y|$

$$
w \equiv \hat{x} U \times V \widehat{x} \times \widehat{v} .
$$

Lemma (Dorat and Nivat, 2003) (Brlek, Labelle and Lacasse, 2005)
In a non-intersecting closed path on a square lattice,

$$
\#(\text { left turns })-\#(\text { right turns })=4 .
$$

Admissible factors, detection and properties Detecting pseudo-squares Detection pseudo-hexagons

Admissible factors

2. $|x| \neq|y|$.

Admissible factors, detection and properties Detecting pseudo-squares Detection pseudo-hexagons

Admissible factors

2. $|x| \neq|y|$.

$w \equiv \alpha \beta \gamma$, where $\vec{\beta}=\overrightarrow{0}$.

Admissible factors, detection and properties Detecting pseudo-squares Detection pseudo-hexagons

Admissible factors

2. $|x| \neq|y|$.

$w \equiv \alpha \beta \gamma$, where $\vec{\beta}=\overrightarrow{0}$.

Admissible factors, detection and properties Detecting pseudo-squares Detection pseudo-hexagons

Admissible factors

2. $|x| \neq|y|$.

$w \equiv \alpha \beta \gamma$, where $\vec{\beta}=\overrightarrow{0}$.

Admissible factors, detection and properties Detecting pseudo-squares Detection pseudo-hexagons

Admissible factors

2. $|x| \neq|y|$.

$$
w \equiv \alpha \beta \gamma \text {, where } \vec{\beta}=\overrightarrow{0} .
$$

Admissible factors, detection and properties Detecting pseudo-squares Detection pseudo-hexagons

Admissible factors

2. $|x| \neq|y|$.

$$
w \equiv \alpha \beta \gamma \text {, where } \vec{\beta}=\overrightarrow{0} .
$$

Admissible factors, detection and properties Detecting pseudo-squares Detection pseudo-hexagons

Admissible factors

2. $|x| \neq|y|$.

$$
w \equiv \alpha \beta \gamma, \text { where } \vec{\beta}=\overrightarrow{0} .
$$

Admissible factors

Lemma

Let w a word coding a polyomino p with Beauquier-Nivat's factorization $w \equiv X Y Z \widehat{X} \widehat{Y} \widehat{Z}$. Then, X, Y and Z are admissible.

Admissible factors

Lemma

Let w a word coding a polyomino p with Beauquier-Nivat's factorization $w \equiv X Y Z \widehat{X} \widehat{Y} \widehat{Z}$. Then, X, Y and Z are admissible.

- $w \equiv A x \widehat{A} y$, for x, y such that $|x|=|y|$.
- A is maximal, that is, $\operatorname{first}(x) \neq \overline{\operatorname{last}(x)}$ and $\operatorname{first}(y) \neq \overline{\operatorname{last}(y)}$.

Admissible factors

Lemma

Let w a word coding a polyomino p with Beauquier-Nivat's factorization $w \equiv X Y Z \widehat{X} \widehat{Y} \widehat{Z}$. Then, X, Y and Z are admissible.

- $w \equiv A x \widehat{A} y$, for x, y such that $|x|=|y|$.

Direct consequence of the fact that $|u|=|\widehat{u}|$ for all $u \in \Sigma^{*}$.

- A is maximal, that is, $\operatorname{first}(x) \neq \overline{\operatorname{last}(x)}$ and $\operatorname{first}(y) \neq \overline{\operatorname{last}(y)}$.

Admissible factors

Lemma

Let w a word coding a polyomino p with Beauquier-Nivat's factorization $w \equiv X Y Z \widehat{X} \widehat{Y} \widehat{Z}$. Then, X, Y and Z are admissible.

- $w \equiv A x \widehat{A} y$, for x, y such that $|x|=|y|$.

Direct consequence of the fact that $|u|=|\widehat{u}|$ for all $u \in \Sigma^{*}$.

- A is maximal, that is, $\operatorname{first}(x) \neq \overline{\operatorname{last}(x)}$ and $\operatorname{first}(y) \neq \overline{\operatorname{last}(y)}$.

By contradiction, assume that X is not maximal, then $\operatorname{first}(Y Z)=\overline{\operatorname{last}(Y Z)}$.

Admissible factors

Lemma

Let w a word coding a polyomino p with Beauquier-Nivat's factorization $w \equiv X Y Z \widehat{X} \widehat{Y} \widehat{Z}$. Then, X, Y and Z are admissible.

- $w \equiv A x \widehat{A} y$, for x, y such that $|x|=|y|$.

Direct consequence of the fact that $|u|=|\widehat{u}|$ for all $u \in \Sigma^{*}$.

- A is maximal, that is, $\operatorname{first}(x) \neq \overline{\operatorname{last}(x)}$ and $\operatorname{first}(y) \neq \overline{\operatorname{last}(y)}$.

By contradiction, assume that X is not maximal, then $\operatorname{first}(Y Z)=\overline{\operatorname{last}(Y Z)}$.
$Y Z=\alpha Y^{\prime} Z^{\prime} \bar{\alpha}$

Admissible factors

Lemma

Let w a word coding a polyomino p with Beauquier-Nivat's factorization $w \equiv X Y Z \widehat{X} \widehat{Y} \widehat{Z}$. Then, X, Y and Z are admissible.

- $w \equiv A x \widehat{A} y$, for x, y such that $|x|=|y|$.

Direct consequence of the fact that $|u|=|\widehat{u}|$ for all $u \in \Sigma^{*}$.

- A is maximal, that is, $\operatorname{first}(x) \neq \overline{\operatorname{last}(x)}$ and $\operatorname{first}(y) \neq \overline{\operatorname{last}(y)}$.

By contradiction, assume that X is not maximal, then first $(Y Z)=\overline{\operatorname{last}(Y Z)}$.
$Y Z=\alpha Y^{\prime} Z^{\prime} \bar{\alpha} \Longrightarrow \widehat{Y} \widehat{Z}=\widehat{\alpha Y^{\prime}} \widehat{Z^{\prime} \bar{\alpha}}=\widehat{Y^{\prime}} \bar{\alpha} \alpha \widehat{Z}^{\prime}$.

Admissible factors

Lemma

Let w a word coding a polyomino p with Beauquier-Nivat's factorization $w \equiv X Y Z \widehat{X} \widehat{Y} \widehat{Z}$. Then, X, Y and Z are admissible.

- $w \equiv A x \widehat{A} y$, for x, y such that $|x|=|y|$.

Direct consequence of the fact that $|u|=|\widehat{u}|$ for all $u \in \Sigma^{*}$.

- A is maximal, that is, $\operatorname{first}(x) \neq \overline{\operatorname{last}(x)}$ and $\operatorname{first}(y) \neq \overline{\operatorname{last}(y)}$.
$w \equiv X Y \widehat{X} \widehat{Y}$ with $Y=\alpha Y^{\prime} \bar{\alpha}$.

Admissible factors

Lemma

Let w a word coding a polyomino p with Beauquier-Nivat's factorization $w \equiv X Y Z \widehat{X} \widehat{Y} \widehat{Z}$. Then, X, Y and Z are admissible.

- $w \equiv A x \widehat{A} y$, for x, y such that $|x|=|y|$.

Direct consequence of the fact that $|u|=|\widehat{u}|$ for all $u \in \Sigma^{*}$.

- A is maximal, that is, $\operatorname{first}(x) \neq \overline{\operatorname{last}(x)}$ and $\operatorname{first}(y) \neq \overline{\operatorname{last}(y)}$.
$w \equiv X Y \widehat{X} \widehat{Y}$ with $Y=\alpha Y^{\prime} \bar{\alpha}$.

Admissible factors

Lemma

Let w a word coding a polyomino p with Beauquier-Nivat's factorization $w \equiv X Y Z \widehat{X} \widehat{Y} \widehat{Z}$. Then, X, Y and Z are admissible.

- $w \equiv A x \widehat{A} y$, for x, y such that $|x|=|y|$.

Direct consequence of the fact that $|u|=|\widehat{u}|$ for all $u \in \Sigma^{*}$.

- A is maximal, that is, $\operatorname{first}(x) \neq \overline{\operatorname{last}(x)}$ and $\operatorname{first}(y) \neq \overline{\operatorname{last}(y)}$. $w \equiv X Y \widehat{X} \widehat{Y}$ with $Y=\alpha Y^{\prime} \bar{\alpha}$.

Admissible factors

Lemma

Let w a word coding a polyomino p with Beauquier-Nivat's factorization $w \equiv X Y Z \widehat{X} \widehat{Y} \widehat{Z}$. Then, X, Y and Z are admissible.

- $w \equiv A x \widehat{A} y$, for x, y such that $|x|=|y|$.

Direct consequence of the fact that $|u|=|\widehat{u}|$ for all $u \in \Sigma^{*}$.

- A is maximal, that is, $\operatorname{first}(x) \neq \overline{\operatorname{last}(x)}$ and $\operatorname{first}(y) \neq \overline{\operatorname{last}(y)}$. $w \equiv X Y \widehat{X} \widehat{Y}$ with $Y=\alpha Y^{\prime} \bar{\alpha}$.

Admissible factors

Lemma

Let w a word coding a polyomino p with Beauquier-Nivat's factorization $w \equiv X Y Z \widehat{X} \widehat{Y} \widehat{Z}$. Then, X, Y and Z are admissible.

- $w \equiv A x \widehat{A} y$, for x, y such that $|x|=|y|$.

Direct consequence of the fact that $|u|=|\widehat{u}|$ for all $u \in \Sigma^{*}$.

- A is maximal, that is, $\operatorname{first}(x) \neq \overline{\operatorname{last}(x)}$ and $\operatorname{first}(y) \neq \overline{\operatorname{last}(y)}$. $w \equiv X Y \widehat{X} \widehat{Y}$ with $Y=\alpha Y^{\prime} \bar{\alpha}$.

Admissible factors

Lemma

Let w a word coding a polyomino p with Beauquier-Nivat's factorization $w \equiv X Y Z \widehat{X} \widehat{Y} \widehat{Z}$. Then, X, Y and Z are admissible.

- $w \equiv A x \widehat{A} y$, for x, y such that $|x|=|y|$.

Direct consequence of the fact that $|u|=|\widehat{u}|$ for all $u \in \Sigma^{*}$.

- A is maximal, that is, $\operatorname{first}(x) \neq \overline{\operatorname{last}(x)}$ and $\operatorname{first}(y) \neq \overline{\operatorname{last}(y)}$. $w \equiv X Y \widehat{X} \widehat{Y}$ with $Y=\alpha Y^{\prime} \bar{\alpha}$.

Admissible factors

Lemma

Let w a word coding a polyomino p with Beauquier-Nivat's factorization $w \equiv X Y Z \widehat{X} \widehat{Y} \widehat{Z}$. Then, X, Y and Z are admissible.

- $w \equiv A x \widehat{A} y$, for x, y such that $|x|=|y|$.

Direct consequence of the fact that $|u|=|\widehat{u}|$ for all $u \in \Sigma^{*}$.

- A is maximal, that is, $\operatorname{first}(x) \neq \overline{\operatorname{last}(x)}$ and $\operatorname{first}(y) \neq \overline{\operatorname{last}(y)}$. $w \equiv X Y \widehat{X} \widehat{Y}$ with $Y=\alpha Y^{\prime} \bar{\alpha}$.

Admissible factors

$$
w \equiv a \operatorname{a} a b a b \bar{a} b \bar{a} \bar{a} \bar{a} \bar{b} \bar{a} \bar{b} a \bar{b}
$$

Admissible factors

$$
w \equiv \underbrace{a \operatorname{a} a}_{A} \underbrace{b a b \bar{a} b}_{x} \underbrace{\bar{a} \bar{a} \bar{a}}_{\widehat{A}} \underbrace{\bar{b} \bar{a} \bar{b} a \bar{b}}_{y}
$$

Admissible factors

$$
w \equiv \underbrace{a \operatorname{a} a}_{A} \underbrace{b a b \bar{a} b}_{x} \underbrace{\bar{a} \bar{a} \bar{a}}_{\widehat{A}} \underbrace{\bar{b} \bar{a} \bar{b} a \bar{b}}_{y}
$$

Admissible factors

$$
w \equiv \underbrace{a a}_{X} \underbrace{a b a}_{Y} \underbrace{b \bar{a} b}_{Z} \underbrace{\bar{a} \bar{a}}_{\widehat{X}} \underbrace{\bar{a} \bar{b} \bar{a}}_{\widehat{Y}} \underbrace{\bar{b} a \bar{b}}_{\widehat{Z}}
$$

The tiling problem

Admissible factors

Listing admissible factors

Lemma

Given a position p in the word w coding a polyomino, all the admissible factors overlapping p can be listed in linear time.

Listing admissible factors

Lemma

Given a position p in the word w coding a polyomino, all the admissible factors overlapping p can be listed in linear time.

$$
\text { If } w \equiv A \times \widehat{A} y \text { then } \widehat{w} \equiv \widehat{y} A \widehat{x} \widehat{A}
$$

\square

Listing admissible factors

Lemma

Given a position p in the word w coding a polyomino, all the admissible factors overlapping p can be listed in linear time.

$$
\text { If } w \equiv A \times \widehat{A} y \text { then } \widehat{w} \equiv \widehat{y} A \widehat{x} \widehat{A}
$$

Listing admissible factors

Lemma

Given a position p in the word w coding a polyomino, all the admissible factors overlapping p can be listed in linear time.

$$
\text { If } w \equiv A \times \widehat{A} y \text { then } \widehat{w} \equiv \widehat{y} A \widehat{x} \widehat{A}
$$

Listing admissible factors

Lemma

Given a position p in the word w coding a polyomino, all the admissible factors overlapping p can be listed in linear time.

$$
\text { If } w \equiv A \times \widehat{A} y \text { then } \widehat{w} \equiv \widehat{y} A \widehat{x} \widehat{A}
$$

Listing admissible factors

Lemma

Given a position p in the word w coding a polyomino, all the admissible factors overlapping p can be listed in linear time.

$$
\text { If } w \equiv A \times \widehat{A} y \text { then } \widehat{w} \equiv \widehat{y} A \widehat{x} \widehat{A}
$$

Listing admissible factors

Lemma

Given a position p in the word w coding a polyomino, all the admissible factors overlapping p can be listed in linear time.

$$
\text { If } w \equiv A \times \widehat{A} y \text { then } \widehat{w} \equiv \widehat{y} A \widehat{x} \widehat{A}
$$

Listing admissible factors

Lemma

Given a position p in the word w coding a polyomino, all the admissible factors overlapping p can be listed in linear time.

$$
\text { If } w \equiv A \times \widehat{A} y \text { then } \widehat{w} \equiv \widehat{y} A \widehat{x} \widehat{A}
$$

Listing admissible factors

Lemma

Given a position p in the word w coding a polyomino, all the admissible factors overlapping p can be listed in linear time.

If $w \equiv A \times \widehat{A} y$ then $\widehat{w} \equiv \hat{y} A \widehat{x} \widehat{A}$.

Listing admissible factors

Lemma

Given a position p in the word w coding a polyomino, all the admissible factors overlapping p can be listed in linear time.

$$
\text { If } w \equiv A \times \widehat{A} y \text { then } \widehat{w} \equiv \widehat{y} A \widehat{x} \widehat{A}
$$

Listing admissible factors

Lemma

Given a position p in the word w coding a polyomino, all the admissible factors overlapping p can be listed in linear time.

$$
\text { If } w \equiv A \times \widehat{A} y \text { then } \widehat{w} \equiv \widehat{y} A \widehat{x} \widehat{A}
$$

Listing admissible factors

Lemma

Given a position p in the word w coding a polyomino, all the admissible factors overlapping p can be listed in linear time.

$$
\text { If } w \equiv A \times \widehat{A} y \text { then } \widehat{w} \equiv \widehat{y} A \widehat{x} \widehat{A}
$$

Listing admissible factors

Lemma

Given a position p in the word w coding a polyomino, all the admissible factors overlapping p can be listed in linear time.

If $w \equiv A \times \widehat{A} y$ then $\widehat{w} \equiv \widehat{y} A \widehat{x} \widehat{A}$.

Listing admissible factors

Lemma

Given a position p in the word w coding a polyomino, all the admissible factors overlapping p can be listed in linear time.

$$
\text { If } w \equiv A \times \widehat{A} y \text { then } \widehat{w} \equiv \widehat{y} A \widehat{x} \widehat{A}
$$

Listing admissible factors

Lemma

Given a position p in the word w coding a polyomino, all the admissible factors overlapping p can be listed in linear time.

$$
\text { If } w \equiv A \times \widehat{A} y \text { then } \widehat{w} \equiv \widehat{y} A \widehat{x} \widehat{A}
$$

Listing admissible factors

Lemma

Given a position p in the word w coding a polyomino, all the admissible factors overlapping p can be listed in linear time.

$$
\text { If } w \equiv A \times \widehat{A} y \text { then } \widehat{w} \equiv \widehat{y} A \widehat{x} \widehat{A}
$$

Listing admissible factors

Lemma

Given a position p in the word w coding a polyomino, all the admissible factors overlapping p can be listed in linear time.

$$
\text { If } w \equiv A \times \widehat{A} y \text { then } \widehat{w} \equiv \widehat{y} A \widehat{x} \widehat{A}
$$

Listing admissible factors

Lemma

Given a position p in the word w coding a polyomino, all the admissible factors overlapping p can be listed in linear time.

$$
\text { If } w \equiv A \times \widehat{A} y \text { then } \widehat{w} \equiv \widehat{y} A \widehat{x} \widehat{A}
$$

Listing admissible factors

Lemma

Given a position p in the word w coding a polyomino, all the admissible factors overlapping p can be listed in linear time.

$$
\text { If } w \equiv A \times \widehat{A} y \text { then } \widehat{w} \equiv \widehat{y} A \widehat{x} \widehat{A}
$$

Listing admissible factors

Lemma

Given a position p in the word w coding a polyomino, all the admissible factors overlapping p can be listed in linear time.

$$
\text { If } w \equiv A \times \widehat{A} y \text { then } \widehat{w} \equiv \widehat{y} A \widehat{x} \widehat{A}
$$

Listing admissible factors

Lemma

Given a position p in the word w coding a polyomino, all the admissible factors overlapping p can be listed in linear time.

$$
\text { If } w \equiv A \times \widehat{A} y \text { then } \widehat{w} \equiv \widehat{y} A \widehat{x} \widehat{A}
$$

Listing admissible factors

Lemma

Given a position p in the word w coding a polyomino, all the admissible factors overlapping p can be listed in linear time.

$$
\text { If } w \equiv A \times \widehat{A} y \text { then } \widehat{w} \equiv \widehat{y} A \widehat{x} \widehat{A}
$$

Listing admissible factors

Lemma

Given a position p in the word w coding a polyomino, all the admissible factors overlapping p can be listed in linear time.

$$
\text { If } w \equiv A \times \widehat{A} y \text { then } \widehat{w} \equiv \widehat{y} A \widehat{x} \widehat{A}
$$

Listing admissible factors

Lemma

Given a position p in the word w coding a polyomino, all the admissible factors overlapping p can be listed in linear time.

$$
\text { If } w \equiv A \times \widehat{A} y \text { then } \widehat{w} \equiv \widehat{y} A \widehat{x} \widehat{A}
$$

Detecting pseudo-squares

Theorem
Let w be the boundary of p. Determining if w codes a pseudo-square is decidable in linear time.

Detecting pseudo-squares

Theorem

Let w be the boundary of p. Determining if w codes a pseudo-square is decidable in linear time.

Detecting pseudo-squares

Theorem

Let w be the boundary of p. Determining if w codes a pseudo-square is decidable in linear time.

If $x=\widehat{y}$ then $w \equiv X Y \widehat{X} \widehat{Y}$.

Detecting pseudo-squares

Theorem

Let w be the boundary of p. Determining if w codes a pseudo-square is decidable in linear time.

If $x=\widehat{y}$ then $w \equiv X Y \widehat{X} \widehat{Y}$.
Since $w \equiv A x \widehat{A} y$ then $\widehat{w} \equiv \widehat{y} A \widehat{x} \widehat{A}$.

Detecting pseudo-squares

Theorem

Let w be the boundary of p. Determining if w codes a pseudo-square is decidable in linear time.

If $x=\widehat{y}$ then $w \equiv X Y \widehat{X} \widehat{Y}$.
Since $w \equiv A x \widehat{A} y$ then $\widehat{w} \equiv \widehat{y} A \widehat{x} \widehat{A}$.

Detecting pseudo-squares

Theorem

Let w be the boundary of p. Determining if w codes a pseudo-square is decidable in linear time.

If $x=\widehat{y}$ then $w \equiv X Y \widehat{X} \widehat{Y}$.
Since $w \equiv A x \widehat{A} y$ then $\widehat{w} \equiv \widehat{y} A \widehat{x} \widehat{A}$.

k-square-free words

Definition

A word w is k-square-free if

$$
\max \{|f|: f \in \operatorname{Squares}(w)\}<k .
$$

k-square-free words

Definition

A word w is k-square-free if

$$
\max \{|f|: f \in \operatorname{Squares}(w)\}<k .
$$

Exemple : $w=a \underbrace{\text { a } b a b} b$ a is k-square-free for $k \geq 5$.

k-square-free words

Definition

A word w is k-square-free if

$$
\max \{|f|: f \in \operatorname{Squares}(w)\}<k .
$$

Exemple : $w=a \underbrace{a b a b} b a$ is k-square-free for $k \geq 5$.

Lemma

Let w be a k-square-free word coding a polyomino, and let α be a position in w. the number of admissible factors overlapping α in w is bounded by $4 k+2 \log (n)$.

Detecting pseudo-hexagons

Theorem

Let w be a k-square-free word coding a polyomino, with $k \in \mathcal{O}(\sqrt{n})$. Determining if w codes a pseudo-hexagon is decidable in linear time.

Detecting pseudo-hexagons

Input : w $\in \Sigma^{*}$ coding a polyomino p.
Build L_{1} the list of all admissible factors that overlap the position α.
$\beta:=\left(\right.$ the position of the rightmost letter of w include in a factor of $\left.L_{1}\right)+1$.
Build L_{2} the list of all admissible factors that overlap the position β.
For all $X \in L_{1}$ do
For all $Y \in L_{2}$ do
If $w \equiv X Y x \widehat{X} \widehat{Y} y$ then
Compute i : the position of x in w.
Compute j : the position of \widehat{y} in \widehat{w}.
If longest common extention $(w, \widehat{w}, i, j)=|x|$ then
p is a speudo-hexagon.
End if
End if
End for
End for

Detecting pseudo-hexagons

Input : w $\in \Sigma^{*}$ coding a polyomino p.
Build L_{1} the list of all admissible factors that overlap the position α. $\beta:=\left(\right.$ the position of the rightmost letter of w include in a factor of $\left.L_{1}\right)+1$.
Build L_{2} the list of all admissible factors that overlap the position β.
For all $X \in L_{1}$ do
For all $Y \in L_{2}$ do
If $w \equiv X Y \times \widehat{X} \widehat{Y} y$ then
Compute i : the position of x in w.
Compute j : the position of \widehat{y} in \widehat{w}.
If longest common extention $(w, \widehat{w}, i, j)=|x|$ then
p is a speudo-hexagon.
End if
End if
$w \equiv \square$
End for
End for

Detecting pseudo-hexagons

Input : w $\in \Sigma^{*}$ coding a polyomino p.
Build L_{1} the list of all admissible factors that overlap the position α. $\beta:=\left(\right.$ the position of the rightmost letter of w include in a factor of $\left.L_{1}\right)+1$.
Build L_{2} the list of all admissible factors that overlap the position β.
For all $X \in L_{1}$ do
For all $Y \in L_{2}$ do
If $w \equiv X Y \times \widehat{X} \widehat{Y} y$ then
Compute i : the position of x in w.
Compute j : the position of \widehat{y} in \widehat{w}.
If longest common extention $(w, \widehat{w}, i, j)=|x|$ then
p is a speudo-hexagon.
End if
End if
End for
End for

Detecting pseudo-hexagons

Input : w $\in \Sigma^{*}$ coding a polyomino p.
Build L_{1} the list of all admissible factors that overlap the position α.
$\beta:=\left(\right.$ the position of the rightmost letter of w include in a factor of $\left.L_{1}\right)+1$.
Build L_{2} the list of all admissible factors that overlap the position β.
For all $X \in L_{1}$ do
For all $Y \in L_{2}$ do
If $w \equiv X Y \times \widehat{X} \widehat{Y} y$ then
Compute i : the position of x in w.
Compute j : the position of \widehat{y} in \widehat{w}.
If longest common extention $(w, \widehat{w}, i, j)=|x|$ then
p is a speudo-hexagon.
End if
End if
End for
End for

Detecting pseudo-hexagons

Input : w $\in \Sigma^{*}$ coding a polyomino p.
Build L_{1} the list of all admissible factors that overlap the position α. $\beta:=\left(\right.$ the position of the rightmost letter of w include in a factor of $\left.L_{1}\right)+1$.
Build L_{2} the list of all admissible factors that overlap the position β.
For all $X \in L_{1}$ do
For all $Y \in L_{2}$ do
If $w \equiv X Y \times \widehat{X} \widehat{Y} y$ then
Compute i : the position of x in w.
Compute j : the position of \widehat{y} in \widehat{w}.
If longest common extention $(w, \widehat{w}, i, j)=|x|$ then
p is a speudo-hexagon.
End if
End if
End for
End for

Detecting pseudo-hexagons

Input : w $\in \Sigma^{*}$ coding a polyomino p.
Build L_{1} the list of all admissible factors that overlap the position α. $\beta:=\left(\right.$ the position of the rightmost letter of w include in a factor of $\left.L_{1}\right)+1$.
Build L_{2} the list of all admissible factors that overlap the position β.
For all $X \in L_{1}$ do
For all $Y \in L_{2}$ do
If $w \equiv X Y \times \widehat{X} \widehat{Y} y$ then
Compute i : the position of x in w.
Compute j : the position of \widehat{y} in \widehat{w}.
If longest common extention $(w, \widehat{w}, i, j)=|x|$ then
p is a speudo-hexagon.
End if
End if
End for
End for

Detecting pseudo-hexagons

Input : w $\in \Sigma^{*}$ coding a polyomino p.
Build L_{1} the list of all admissible factors that overlap the position α.
$\beta:=\left(\right.$ the position of the rightmost letter of w include in a factor of $\left.L_{1}\right)+1$.
Build L_{2} the list of all admissible factors that overlap the position β.
For all $X \in L_{1}$ do
For all $Y \in L_{2}$ do
If $w \equiv X Y \times \widehat{X} \widehat{Y} y$ then
Compute i : the position of x in w.
Compute j : the position of \widehat{y} in \widehat{w}.
If longest common extention $(w, \widehat{w}, i, j)=|x|$ then
p is a speudo-hexagon.
End if
End if
End for
End for

Detecting pseudo-hexagons

Input : w $\in \Sigma^{*}$ coding a polyomino p.
Build L_{1} the list of all admissible factors that overlap the position α.
$\beta:=\left(\right.$ the position of the rightmost letter of w include in a factor of $\left.L_{1}\right)+1$.
Build L_{2} the list of all admissible factors that overlap the position β.
For all $X \in L_{1}$ do
For all $Y \in L_{2}$ do
If $w \equiv X Y \times \widehat{X} \widehat{Y} y$ then
Compute i : the position of x in w.
Compute j : the position of \widehat{y} in \widehat{w}.
If longest common extention $(w, \widehat{w}, i, j)=|x|$ then
p is a speudo-hexagon.
End if
End if
End for
End for

Detecting pseudo-hexagons

Input : w $\in \Sigma^{*}$ coding a polyomino p.
Build L_{1} the list of all admissible factors that overlap the position α.
$\beta:=\left(\right.$ the position of the rightmost letter of w include in a factor of $\left.L_{1}\right)+1$.
Build L_{2} the list of all admissible factors that overlap the position β.
For all $X \in L_{1}$ do
For all $Y \in L_{2}$ do
If $w \equiv X Y \times \widehat{X} \widehat{Y} y$ then
Compute i : the position of x in w.
Compute j : the position of \widehat{y} in \widehat{w}.
If longest common extention $(w, \widehat{w}, i, j)=|x|$ then
p is a speudo-hexagon.
End if
End if
End for
End for

Detecting pseudo-hexagons

Input : w $\in \Sigma^{*}$ coding a polyomino p.
Build L_{1} the list of all admissible factors that overlap the position α.
$\beta:=\left(\right.$ the position of the rightmost letter of w include in a factor of $\left.L_{1}\right)+1$.
Build L_{2} the list of all admissible factors that overlap the position β.
For all $X \in L_{1}$ do
For all $Y \in L_{2}$ do
If $w \equiv X Y \times \widehat{X} \widehat{Y} y$ then
Compute i : the position of x in w.
Compute j : the position of \widehat{y} in \widehat{w}.
If longest common extention $(w, \widehat{w}, i, j)=|x|$ then
p is a speudo-hexagon.
End if
End if
End for
End for

Detecting pseudo-hexagons

Input : w $\in \Sigma^{*}$ coding a polyomino p.
Build L_{1} the list of all admissible factors that overlap the position α.
$\beta:=\left(\right.$ the position of the rightmost letter of w include in a factor of $\left.L_{1}\right)+1$.
Build L_{2} the list of all admissible factors that overlap the position β.
For all $X \in L_{1}$ do
For all $Y \in L_{2}$ do
If $w \equiv X Y \times \widehat{X} \widehat{Y} y$ then

$$
\mathcal{O}\left(n+(k+\log n)^{2}\right)=\mathcal{O}(n)
$$

Compute i : the position of x in w.
Compute j : the position of \widehat{y} in \widehat{w}.
If longest common extention $(w, \widehat{w}, i, j)=|x|$ then p is a speudo-hexagon.
End if
End if
End for
End for

$\mathcal{T H A N K} \mathcal{Y O U !}$

