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Xavier Provençal, Laurent Vuillon
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Abstract

We study a natural and naive composition algorithm what takes three input words written on
two-letter alphabets and synchronizes then into a word on a three-letter alphabet. We show that
in the case where the three input words are compatible Christoffel words, the algorithm provides a
synchronization of the letters what allows the geometrical interpretation of the input words to be
inherited by the output word forming a 3D discrete line segment. A second approach is considered
while applying our composition algorithm to words defined by stripes meeting at a corner of a
discrete planes. We show that, under certain conditions, the output of the algorithm correspond
to the normal vector of the plane.
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1. Introduction

Discrete lines are fundamental objects in discrete mathematics. The finite version of discrete
lines, called discrete segments, appeared for the first time in the work of Christoffel [Chr75] for
the dimension 2 and was extensively studied by Borel Laubie [BL93], Reutenauer [BLRS09] and
the community of discrete geometry (see [Rev91, KR04]). The infinite version of discrete lines
in dimension 2 is called Sturmian words and is related to techniques in combinatorics on words
[BS02], discrete dynamical systems [Fog07], square billiards [AR91, AMST94] and cutting words
[HV07]. In dimension 3, the infinite version of discrete lines gives cubic billiards [AR91, AMST94]
and leads to problem on multidimensional continued fractions [Rau82]. In discrete geometry, finite
versions of discrete lines have been considered in dimension three, we refer to the work of Reveillès
[FR96, FR06], Andres [And03], Toutant [Tou06] and Berthé and Labbé [BL11]. In fact, if we
consider the construction of discrete segments related to continued fraction, the work of Berthé
and Labbé [BL11] states many interesting parameters in order to study the properties of distinct
continued fraction algorithms. A good candidate for discrete segments in dimension 3 is a finite
version of cubic billiards since they inherit nice properties like, for instance, a short distance from
each of the points of the discrete segment to the real line segment. Moreover it is exactly the
composition of three square billiard words. Furthermore, a square billiard word has infinitely
many palindromic prefixes while Borel and Reutenauer [BR05] have shown that it is usually not
the case for cubic billiard words.
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In this paper we present a composition algorithm that takes three words written on two-letter
alphabets as input. More precisely, the input words must be such that the first one is written over
some alphabet {a,b}, the second on is written on an alphabet {a, c} and the third one is written
over the alphabet {b, c}. The algorithm combines the first letters of the three words in order output
word over the alphabet {a,b, c}. The main goal of this paper is to understand the combinatorial
and geometrical properties of the output given certain types of input words. Section 2 recalls
the usual definitions of Christoffel and billiard words. Section 3 is dedicated to the composition
algorithm. Section 4 shows the composition of three primitive (or non-primitive) Christoffel words
with an arithmetic constraint that enables us to construct a Christoffel word in dimension three.
Section 5 gives some experimental results and shows that, unlike in dimension two, in dimension
three balancedness, palindromicity and complexity are in general distinct notions. The last section
deals with discrete planes. Any corner of a discrete plane defines three stripes and by considering
the normal vector of the consecutive faces of cube along a stripe, we obtain three words written on
compatible alphabets. These words are used as input for the composition algorithm and we show
that, on a well chosen corner, the output describes a 3D discrete line in the same direction than
the normal vector.

2. Preliminaries

A word is a sequence, finite of not, of symbols called letters. An alphabet is a finite set of letters.
A word w = w1w2 · · ·wn where each wi is a letter, is said to be written on the alphabet A if each
wi ∈ A. In order to simply the presentation the i-th letter of w is also referred as w[i]. The length
of the word w, denoted as |w|, is the total number of letters in w. The number of occurrences of a
specific letter a in a word w is denoted by |w|a so, |w| = ∑

a∈A
|w|a. The word ε, called the empty

word, is the unique word of length zero. The set A∗ of all finite words on A forms a free monoid
with neutral element ε when the concatenation operator · is considered. The notation wk, with
k ∈ N, is the concatenation of k copy of the word w.

Let p, f, s ∈ A∗ such that w = pfs, we say that p is a prefix of w, f is a factor of w and s is
a suffix of w. Note that since any of the words p, f , s might be ε, prefixes and suffixes are also
factors.

In the following, we will consider the three following properties of words:

• The word w̃ = wnwn−1 · · ·w1 is called the mirror of w, and a palindrome is a word w such
that w = w̃.

• An integer p > 0 is a period of w if for all i ∈ {1, 2, . . . , n− p}, wi = wi+p.

• A finite word u is called a periodic pattern of w if w = uk for some k ≥ 1.

• The word w is k-balanced if, for any two factors u, v of w and any letters a ∈ A,

|u| = |v| =⇒
∣∣|u|a − |v|a

∣∣ ≤ k.

Usually a 1-balanced word is called a balanced word and a pair u, v such that there exist a letter
a such that

∣∣|u|a − |v|a
∣∣ > 1 is called unbalanced. See [Vui03] for a survey on balanced words and

their generalizations.
A common geometrical interpretation for words on alphabet A = {1, 2, · · · , d} is to associate

the letter i ∈ A to the unit vector ei, th. i-th vector of the canonical basis of Rd, for i = 1, · · · , d
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so that words encode paths in a d-dimensional space. This coding is known as the Freeman code.
The abelianized of a word w, denoted by −→w , is the translation defined by this word :

−→w = (|w|1, |w|2, · · · , |w|d).

Finally, given a word w ∈ A∗ and a letter a ∈ A, the projection of w relatively to the letter a,
noted w↓a, is the word obtained by removing every occurrences of a from w. Note that given a

word w ∈ A∗ such that −→w = (x1, x2, . . . , xd) then
−−→
w↓a = (x1, x2, . . . , xa−1, 0, xa+1, . . . , xd).

2.1. Christoffel words

Christoffel words may be considered as the rational case of Sturmian word. They are called
Christoffel by reference to [Chr75] while the geometrical point of view that we consider here is
mostly due to [Ber90] and [BL93]. We refer the reader to [BLRS09] for a comprehensive self-
contained survey on Christoffel words.

Let A = {a,b} be an ordered alphabet with a < b. A Christoffel word on A is defined by a
pair of strictly positive and relatively prime integers p, q as follows.

1. Let S be the line segment that starts in (0, 0) and ends in (p, q).

2. Consider the set of all discrete paths that start in (0, 0), end in (p, q), contain only north
(that is e2) and east (that is e1) steps and remain below S. Let P be the closest path to S.

3. The Freeman code of P is the primitive Christoffel word C(a,b)(p, q). By convention, letter
a codes e1 and b codes e2 and q/p is called the slope of C(a,b)(p, q).

Figure 1: Construction of the Christoffel word C(1,2)(5, 3) = 1 · 121121 · 2.

This definition is illustrated in Figure 1. Remark that by definition of C(1,2)(5, 3) this Christoffel
word is on the alphabet {1, 2} and has five 1’s and three 2’s, more generally C(a,b)(p, q) with
relatively prime integers p, q means the Christoffel word on the alphabet {a,b} with p a’s and
q b’s . A non-primitive Christoffel word is a word w = Ck, where C is a primitive Christoffel
word and k ≥ 2. Note that, as defined here, these words are called lower Christoffel words by
some authors. Moreover, the words C(a,b)(1, 0) = a and C(a,b)(0, 1) = b are usually called trivial
Christoffel words but our definition excludes them. In order to lighten the presentation, when the
alphabet is obvious, a Christoffel word of slope q/p may be simply denoted by C(p, q).

The set of all Christoffel words over alphabet {a,b} is denoted by C(a,b). Clearly the construc-
tion of Christoffel words forces that a word w ∈ C(a,b) starts with the letter a and ends with the
letter b.

Definition 2.1. A word u ∈ A∗ is called a central word if there exists a primitive Christoffel word
w ∈ C(a,b) such that w = aub.

The following theorem summarizes some of the well known properties of Christoffel words.
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Theorem 2.2 ([dLM94, BdL97]). Let u,w ∈ A∗ such that w = au b. Then the following conditions
are equivalent:

1. w is a primitive Christoffel word.

2. u has periods p and q with gcd(p, q) = 1 and |u| = p+ q − 2.

3. The words aua,aub, bua, bub are 1-balanced.

4. Either u ∈ {a}∗ ∪ {b}∗, or u is a palindrome and there exist two palindromes x, y such that
u = xab y.

2.2. Square billiards words

We give some information about the world of billiards [Bar95, Tab95]. Indeed, Sturmian words
are characterized by coding of a square billiard word with irrational slope. Let us consider a square
billiard table and a trajectory of a point along an irrational slope. Each time that the point hits the
border of the billiard table, it bounces according to the reflection laws (the angles of the trajectory
with the normal before and after the reflection are equal). Note that with this usual definition the
trajectory is not defined in corners. Now, if we code by a (resp. by b) when the point hits the
vertical (resp. horizontal) sides then the infinite word given by the coding of the trajectory is a
Sturmian word. We only consider trajectories that start from (0, 0) so a billiard word is completely
defined by a second point of R2. The set of all billiard words on the alphabet A = {a,b} is denoted
by B(a,b) and among the words of B(a,b), the one defined by the line that passes through the origin
and the point (x, y) is denoted B(a,b)(x, y). The slope of the billiard word B(a,b)(x, y) is the ratio
y/x.

It is well know that the construction of a billiard words of slope α is equivalent to drawing the
straight line of slope α on a square lattice and considering its intersections with the horizontal and
vertical lines of the square grid (see Figure 2).

Figure 2: A billiard trajectory is conveniently seen as a straight line crossing a square grid.

In the case of a rational slope q/p, with gcd(p, q) = 1, starting from (0, 0) the straight line crosses
all integer coordinates points of the from (kp, kq) for k ∈ Z. Usually, such case is excluded since
there is integer points present a problem with the classical definition of infinite billiard words. We
avoid this problem by defining a finite billiard word as the word obtained by coding the trajectory
between (0, 0) to (p, q), where it is well defined as a cutting sequence. As explained, for instance, in
[BR05], there is an equivalence between finite (resp. infinite) billiard words and Christoffel (resp.
Sturmian) words. We focus on the finite case, as illustrated in Figure 3. In the following, we will
constantly switch from one point of view to the other.

Proposition 2.3. Given a pair of relatively prime numbers p, q with p, q ≥ 1, the central word of
the Christoffel word C(p, q) is the finite billiard word B(p, q).
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Figure 3: The billiard and the Christoffel word defined by vector (8, 5). The Christoffel word is C(1,2)(8, 5) =
1 · 12112121121 · 2 and the finite billiard B(1,2)(8, 5) = 12112121121. The positions where the real line segment from
(0, 0) to (8, 5) crosses an horizontal line are identified by symbol ◦ and are coded by the letter 1 while positions
where a vertical line is crossed are identified by × and are coded with letter 2. The dashed line is the part of the
Christoffel path that corresponds to the central word starting from (1/2, 1/2). The correspondence with the billiard
word is obvious since at each step the dashed line crosses one and only one one line of the square grid which is also
crossed by the real line segment.

One of the implications of Proposition 2.3 is that square billiard words are palindromes. Geo-
metrically, the trajectory from (0, 0) to (p, q) defines a cutting sequence that is symmetric around
(p/2, q/2). Also, by exchanging the role of p and q and doing the same for a and b, we have that
given p, q with gcd(p, q) = 1,

B(a,b)(p, q) = B(b,a)(q, p).

This equality translate to Christoffel words as follow: if u is the central word of C(a,b)(p, q),
with gcd(p, q) = 1, then

C(b,a)(q, p) = bua.

By the above proposition, the billiard word B(p, q) and the corresponding Christoffel word
C(p, q) are such that C(p, q) = a ·B(p, q) · b. The word B(p, q) is exactly two letters shorter then
C(p, q) because we do not consider the starting point and the ending point of the segment (0, 0)
and (p, q), since in these points the segment meets a horizontal and a vertical line of the square
lattice at the same time. Those integer crossings may not be coded in a billiard word. In order

to define our version of discrete line segments we introduce special letters of the form
←→
ab, which

simply encodes the fact that both letters a and b should occur at this position. Given a word w
that contains special letters, we introduce the notion of choice that is to replace each special letter←→
ab by ab or ba in order to obtain a word that is written on normal letters. For this reason, we

have that
←→
ab =

←→
ba. Note that given a special letter this choice may vary from an occurrence to

another. Of course, by doing so, the result may not correspond to a cutting sequence as in the case

of a billiard word. Finally, we use the convention that a special letter
←→
ab abelianizes to ea + eb.

In order to emphasize the duality between Christoffel and billiard words, we consider the first
and last letter of a Christoffel word and code them by a single special letter since they correspond
to the coding of an integer point in the billiard word. Thus, from now on, a Christoffel word on
{a,b}, primitive or not, is written:

C(kp, kq) = (C(p, q))k = −→a ·B(p, q) · ←→ba ·B(p, q) · · ·←→ba ·B(p, q)︸ ︷︷ ︸
k−1 times

·←−b .
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A natural generalization of square billiards is cubic billiards. We play billiard in a cube starting
from a corner and throw the ball (which again, is just a point) along a given direction. A cubic
billiard word is obtain be noting the letter i each time the ball bounces on a side normal to the
vector ei. A direction (x, y, z) is said irrational if for any k, l,m ∈ Z we have kx+ ly +mz = 0 if
and only if k = l = m = 0. Moreover, the direction (x, y, z) is said to be totally irrational if it is
irrational and (x−1, y−1, z−1) is also irrational. We recall that the complexity function pw(n) of a
word w indicates the number of factor of length n in w :

pw(n) = #{u |u is a factor of w and |u| = n}.

Theorem 2.4. Let w be a 3D billiard word defined by an irrational direction (x, y, z).

• If (x, y, z) is totally irrational then pw(n) = n2 + n+ 1 ([AMST94, Bar95, Bed03]).

• w is 2-balanced ([Vui03]).

3. The composition algorithm

Each cubic billiard word is a mix of three Sturmian words and also a cutting sequence in the
unit cubic grid [HV07]. Indeed, cubic billiard words are words on a three-letter alphabet {1, 2, 3}.
Now, given b a cubic billiard word, the projection of b relatively to the letter 1 (resp. 2 or 3), is
a Sturmian word (geometrically, the trajectory of the cubic billiard is observed from a direction
normal to one of the sides. The result is a square billiard trajectory).

For example, this is the beginning of a billiard sequence:

B = 231232132312321322312312321323123213223123 · · ·

And here are the three associated Sturmian words:

B↓3= 212212122122121221212212212 · · ·
B↓2= 3131331313313131331313313 · · ·
B↓1= 23232323232322323232323232322323 · · ·

Conversely, given three Sturmian words S1, S2, S3 respectively written on alphabets {1, 2},
{1, 3} and {2, 3} there is an easy pseudo algorithm to construct iteratively the associated finite or
infinite cubic billiard word B. At each step, if two of the three words begin by the same letter,
then this first letter is removed from both words and added at the end of the cubic billiard word
(which is initilized as the emtpy word). Otherwise, if the three words start with three different
letters, the process stops and a finite word is obtained.

This construction is described by Algorithm 1 which we call the composition algorithm. Since,
by definition, an algorithm should always terminate, it is written to take finite words as input.
As shown in Figure 4, any triplet of finite words may be used as input. The only requirement
is that the first word is written on alphabet {1, 2}, the second on {1, 3} and the third on {2, 3}.
No geometrical interpretation is required for these words. The output of this algorithm is called
a composition word. Note that at line 1, three new symbols are added at the end of each word in
order to guaranty that X,Y and Z are always non-empty words throughout the execution.

One could use infinite words as input by simply omitting line 1. In such case, there is no
guaranty that the process stops and an infinite composition word may be constructed.

The following lemma formalize the fact that the composition algorithm does rebuild a word
from its three projections.
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Algorithm 1: Composition

Input: w12 ∈ {1, 2}∗, w13 ∈ {1, 3}∗, w23 ∈ {2, 3}∗.
Output: χ ∈ {1, 2, 3}∗
X ← w12 · $; Y ← w13 ·#; Z ← w23 ·%;1

χ = ε;2

repeat3

if X[1] == Y [1] then4

χ← χ · 1 ;5

remove the first letter of X and Y ;6

if X[1] == Z[1] then7

χ← χ · 2;8

remove the first letter of X and Z ;9

if Y [1] == Z[1] then10

χ← χ · 3;11

remove the first letter of Y and Z ;12

until X[1] 6= Y [1] and X[1] 6= Z[1] and Y [1] 6= Z[1] ;13

return χ;14

1 2 2 1 1 2 1 2 2

1 3 3 1 3 1 1 3 3

2 3 2 2 3 2 3 2 2

$

#

%

Figure 4: Illustration of the composition algorithm on the words w12 = 122112122, w31 = 133131133, w23 =
232232322. The algorithm reads the pairs of letters 1, 2, 3, 2 then X[1] = 1, Y [1] = 3 and Z[1] = 2 so the algo-
rithm stops and returns the composition word χ = 1232.

Lemma 3.1. Let W ∈ {1, 2, 3}∗ and let w12 = W↓3, w13 = W↓2, w23 = W↓1. The composition
word χ obtained from w12, w31, w23 is equal to W .

Proof. By recurrence on n = |W |. If n = 0 then the result is trivial. Now, suppose n ≥ 1
and the result holds for all words of length n − 1. Let W ′ be such that W = W ′a for some
a ∈ {1, 2, 3}. W.l.o.g, suppose that a = 1, then by construction, there exist three words α, β, γ
such that w12 = α1, w13 = β1, w23 = γ where α, β, γ are the three projections of W ′.

Since α, β, γ are prefixes of, respectively, w12, w13, w23, the execution of the composition
algorithm with w12, w13 and w23 will first read the words α, β and γ and thus, after n − 1
iterations of the loop, we have:

X = 1$, Y = 1#, Z = %, χ = W ′.

So, at the n-th iteration 1 is added at the end of χ and the word χ = W is returned.
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4. Discrete segments of Z3

We specialize the composition algorithm for the synchronization of three Christoffel words in
order to obtain 3D discrete line segments. For this, we fix the starting point to (0, 0, 0) and consider
an end point (a, b, c) ∈ N3, with a, b, c > 0. We use the composition algorithm on the three central
words u12, u31 and u23 defined as follows :

C(1,2)(a, b) = 1 · u12 · 2,
C(3,1)(c, a) = 3 · u31 · 1,
C(2,3)(b, c) = 2 · u23 · 3.

First, we consider the case where a, b, and c are totally relatively primes, that is gcd(a, b) =
gcd(a, c) = gcd(b, c) = 1. We use the composition algorithm on the three central words u12, u31
and u23. The composition word for vector (a, b, c), denoted by χ, is defined as the composition

word obtained for three compatible Christoffel words. Previously, special letters of the form
←→
12

were introduced to encode the fact that an integer coordinates point has been reached. By analogy,
in dimension three, we introduced the special letter

←→
123 in order to code that an integer crossing

of Z3 has been reached. This letter encodes the fact that all three letters should occur at this
position. We call the word B(a, b, c) =

←→
123χ the discrete segment of vector (a, b, c). By analogy

to the 3D billiard word, the special letter
←→
123 encodes the starting point (0, 0, 0). Note that, by

convention, the special letter
←→
123 abelianizes to (1, 1, 1).

4.1. Composition of primitive words

First, we consider the case a, b and c are totally relatively primes, that is gcd(a, b) = gcd(b, c) =
gcd(a, c) = 1. This implies that the three words used as input for the composition algorithm do
not contain special letters.

For example, we compute the discrete segment for vector (7, 5, 4) by considering

C(1,2)(7, 5) =
−→
1 1212112121

←−
2 ,

C(3,1)(4, 7) =
−→
3 131131131

←−
1 ,

C(2,3)(5, 4) =
−→
2 2323232

←−
3 .

1 2 1 2 1 1 2 1 2 1

1 3 1 1 3 1 1 3 1

2 3 2 3 2 3 2

Figure 5: Illustration of Algorithm 1 on the central words defined by vector (7, 5, 4). Words w12, w31, w23 are set
as the central words of the Christoffel words of slope 5

7
, 4

7
and 4

5
. The composition word for vector (7, 5, 4) is

χ = 1231213121321 and the discrete segment is B(7, 5, 4) =
←→
123χ.

The three input central words are thus, u12 = 1212112121, u31 = 131131131 and u23 = 2323232.
At the beginning of the algorithm, the composition word is empty, χ = ε, and it is incrementally
constructed by taking letters which are equals in the words u12, u31 and u23. At the first iteration,
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we have u12[1] = 1, u31[1] = 1, u23[1] = 2, thus we append the letter 1 to χ and then χ = 1. Then we
consider the next letters in u12 and u31 but not in u23 since its letter we not used yet. At the second
iteration, we have u12[2] = 2, u31[2] = 3 and u23[1] = 2, thus the letter 2 is append to χ and so on
until the three input words are completely read and χ = 1231213121321 (see Figure 5). The central

word obtained is palindromic and the discrete segment B(7, 5, 4) =
←→
1231231213121321 abelianizes

to (7, 5, 4). Note that the only way that a composition word for a vector (a, b, c) abelianizes to
(a− 1, b− 1, c− 1) is that the composition is successful on every letters of the input words.

Proposition 4.1. The composition word χ for vector (a, b, c), where gcd(a, b) = gcd(b, c) =
gcd(a, c) = 1 constructed by Algorithm 1 is palindromic and its abelianized is −→χ = (a−1, b−1, c−1).

Proof. Let B be the cubic billiard word obtained as the cutting sequence of the segment from
(0, 0, 0) to (a, b, c). Since a, b and c are totally relatively primes, the open segment never crosses
a unit cube’s edge or vertex and thus the word B is well defined on alphabet {1, 2, 3}. Also, for
symmetry reasons of the cutting sequence according to the point (a/2, b/2, c/2) we have that B is
a palindrome.

Each projection of B is a square billiard word:

B↓3= B(1,2)(a, b),

B↓2= B(1,3)(a, c),

B↓1= B(2,3)(b, c).

The composition word χ is computed with the composition algorithm using the central words
of the Christoffel words C(1,2)(a, b), C(3,1)(c, a) and C(2,3)(b, c) as input. Using the fact that
B(1,3)(a, c) = B(3,1)(c, a), Proposition 2.3 and Lemma 3.1, we conclude that the composition word
χ is B.

4.2. Billiard words as jump words

We now introduce a formalism which is a monodimensional vision of billiard words. This allows
us to deal with the rational relations between a, b and c.

An equivalent definition of hypercubic billiards is to unfold the trajectory and to consider jump
words on a hypercubic grid. We define a jump word J on alphabet {1, 2, . . . , d}, associated with a
hypercubic billiard in dimension d of angle vector α = (α1, α2, · · ·αd) with rationally independent
coordinates as follows. Let Pj ⊂ R× {1, 2, . . . , d} be the set

PJ =
d⋃

i=1

{ (nαi, i) |n ∈ N}.

Sort the elements of PJ in increasing order according to the first coordinate. Then J is the
concatenation of the second coordinates (see Figure 6). Note that for d = 2 and α1, α2 rationally
independent, we have Sturmian words and for d = 3 and α1, α2, α3 rationally independent we have
cubic billiard words [Bar95].

We use this construction for d = 3, with each αi ∈ Q in order to synchronize Christoffel words,
primitive or not. There is a problem if at least two letters have the same position, that is nαi = mαj

for i 6= j and n,m 6= 0. This is called a collision and this occurs when there is a rational relation
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α1 α1 α1

α2 α2 α2 α2

α3 α3

αd

1 1 12 2 2 23 3d

Figure 6: Illustration of the construction of a n-dimensional hypercubic billiard word using a jump word. The natural
order on the nαi defines the billiard word.

between a, b and c. This implies that at least one of the Christoffel words is not primitive. We
have a choice for coding this collision by 12 or 21 and thus, we use the special letter

←→
12.

In order to understand the relation between the preceding construction and billiard words, we
restate the properties in terms of jump words. In the previous example we compute a discrete
segment from (0, 0, 0) to (7, 5, 4). Thus in terms of jump words we have three possible jumps
α1 =

16
7 , α2 =

16
5 and α3 =

16
4 . Thus we construct the positions, in R, of letter 1 by considering the

values nα1 for n ∈ N. These positions are : 0, 16
7 ,

2∗16
7 , 3∗16

7 , 4∗16
7 , 5∗16

7 , 6∗16
7 , 7∗16

7 , · · · . Similarly,
the positions of letter 2 are given by 0, 16

5 ,
2∗16
5 , 3∗16

5 , 4∗16
5 , 5∗16

5 , · · · . And finally, the positions of
letter 3 are given by 0, 16

4 ,
2∗16
4 , 3∗16

4 , 4∗16
4 , · · · . Notice that the positions of the letters, in R, are

the same up to period 16. Now we sort the positions of the letters in the period. The three first
letters are in position 0 and then quotients are in the following usual order:

0, 16
7 ,

16
5 ,

16
4 ,

2∗16
7 , 2∗16

5 , 3∗16
7 , 2∗16

4 , 4∗16
7 , 3∗16

5 , 5∗16
7 , 3∗16

4 , 4∗16
5 , 6∗16

7 , 16.

←→
123 1 2 3 1 2 1 3 1 2 1 3 2 1

←→
123.

Remark that the positions in the period, excluding the extremities 0 and 16, are two-by-two
distinct and are invariant by the central symmetry of center 2∗16

4 = 8, which means that the above
set of fractions is invariant under the function x 7→ (2 ∗ 8)− x. This is a geometrical way to show
the palindromicity of the composition word χ = 1231213121321.

4.3. Composition of non-primitive words

Now, lets consider the case where pairwise gcds are greater than one. We compute the discrete
segment from (0, 0, 0) to (6, 4, 3). In terms of jump words, the jumps are α1 = 13

6 , α2 = 13
4 and

α3 =
13
3 .

0, 13
6 ,

13
4 ,

2∗13
6 = 13

3 ,
3∗13
6 = 2∗13

4 , 4∗13
6 = 2∗13

3 , 3∗13
4 , 5∗13

6 , 13.

←→
123 1 2

←→
13

←→
12

←→
13 2 1

←→
123.

10



As mentioned, a special letter occurs when nαi = mαj . In order to use the composition
algorithm on words containing special letters, we introduce a new rule for composition : if one

of the three words begins with
←→
ab, a second one with a and a third one with b, the first letter

is removed from all three words and the special letter
←→
ab is added at the end of the composition

word. Figure 7 illustrate the execution of the composition algorithm on the following words:

C(1,2)(6, 4) =
(
C(1,2)(3, 2)

)2
=
−→
1 121

←→
21121

←−
2 ,

C(3,1)(3, 6) =
(
C(3,1)(1, 2)

)3
=
−→
3 1
←→
131
←→
131
←−
1 ,

C(2,3)(4, 3) =
(
C(2,3)(4, 3)

)1
=
−→
2 23232

←−
3 .

1 2 1 ←→
21 1 2 1

1 ←→
13 1 ←→

13 1

2 3 2 3 2

Figure 7: Illustration of the composition algorithm for vector (6, 4, 3). Input words are w12 = 121
←→
21121, w31 =

1
←→
131
←→
131 and w23 = 23232. The composition word χ = 12

←→
13
←→
12
←→
1321.

In order to show that the composition words for vector (a, b, c) ∈ N3 with a, b, c > 0 and
gcd(a, b, c) = 1 is successful, we first show that special letters synchronizes with the appropriate
letters in the other words.

Lemma 4.2. Let (a, b, c) ∈ N3 with a, b, c > 0 and gcd(a, b, c) = 1. Throughout the execution of
the composition algorithm with input words u12, u31 and u23 defined as :

C(1,2)(a, b) =
−→
1 · u12 ·

←−
2

C(3,1)(c, a) =
−→
3 · u31 ·

←−
1

C(2,3)(b, c) =
−→
2 · u23 ·

←−
3

if at one point one of the three words X, Y , Z starts with letter
←→
ab then, the two other ones either

both starts with the same letter or one starts by a and the second one by b.

Proof. First we show that at a given iteration of the composition algorithm, only one of the three
words X, Y , Z may start by a special letter. By contradiction, suppose it it not the case. This
means that, two special letters are associated to the same fraction in the jump word. For instance
we have a point labeled by 1 and 2 (for the word u12) and by 1 and 3 (for the word u31). We show
that this is also labeled by 2 and 3 which means a special letter for the word u23. This implies
that not only are all three words are non-primitive, but the three special letters occur in the same
position which is an integer point between (0, 0, 0) and (a, b, c) (these points excluded).

More precisely, we find k and ℓ such that k∗(a+b+c)
a

= ℓ∗(a+b+c)
b

which implies a collision for the

letters 1 and 2 and we find ℓ and m such that ℓ∗(a+b+c)
b

= m∗(a+b+c)
c

which implies a collision for

the letters 1 and 3. Then we also have the equality k∗(a+b+c)
a

= m∗(a+b+c)
c

which implies a collision

for the letter 2 and 3. The whole equality k∗(a+b+c)
a

= ℓ∗(a+b+c)
b

= m∗(a+b+c)
c

implies another

11



integer point between (0, 0, 0) and (a, b, c). Indeed, we have the following equalities k
a
= l

b
= m

c
and

furthermore as gcd(a, b) > 1 we have k
a
= l

b
= m

c
= p

q
where p

q
is in reduce form (that is a 6= q).

Thus k
a
= k′p

a′q
, l

b
= l′p

b′q
and m

c
= m′p

c′q
. It follows that (a′, b′, c′) with a′, b′, c′ ∈ N − {0} appears in

the segment between (0, 0, 0) and (a, b, c) in contradiction with the hypothesis gcd(a, b, c) = 1.
Finally, it remains to show that the letters correspond. The three words u12, u31 and u23 are in

correspondence with the structure ∪3i=1{nαi|n ∈ N−{0}} where α1 = (a+b+c)/a, α2 = (a+b+c)/b,
α3 = (a+ b+ c)/c, with the restriction to the a+ b+ c−3 first letters of this infinite periodic word.

Again by contradiction, suppose that the words X starts by
←→
12, Y start by 1 and Z start by

3 (the only other problematic case would be Y starts by 3 and Z start by 2 which is similar).

Then it means that in the jump word either we have a special letter
←→
123 which is impossible by

the hypothesis gcd(a, b, c) = 1 or we have the letter 3 before letter
←→
12 and this letter has not been

synchronized. Thus we find a contradiction because word Y may not start with letter 1 (indeed in
order to synchronize this case Y must starts by the letter 3).

We now state the main result of the section.

Theorem 4.3. The composition word χ for vector (a, b, c), where gcd(a, b, c) = 1, constructed by
Algorithm 1 with input words u12, u31 and u23 defined as :

C(1,2)(a, b) =
−→
1 · u12 ·

←−
2

C(3,1)(c, a) =
−→
3 · u31 ·

←−
1

C(2,3)(b, c) =
−→
2 · u23 ·

←−
3

is such that −→χ = (a− 1, b− 1, c− 1).

Proof. Lemma 4.2 ensures that the synchronization of special letters of the form
←→
ab is correct. As

for the lemma, the word u12 is in correspondence with ∪i=1,2{nαi |n ∈ N − {0}}, the second one
u31 with ∪i=1,3{nαi |n ∈ N − {0}} and the third one u23 with ∪i=2,3{nαi |n ∈ N − {0}}, where
α1 = (a+ b+ c)/a, α2 = (a+ b+ c)/b, α3 = (a+ b+ c)/c. The synchronization of the letters 1, 2
and 3 also comes from the fact that the relative order of the letters in each of the three 2D jump
word. More precisely, the word χ is in correspondence with the structure ∪3i=1{nαi|n ∈ N − {0}}
and with the restriction to the a+ b+ c− 3 first letters of this infinite periodic word. Indeed, since
the input word w12 has length a+ b− 2, w13 has length a+ c− 2 and w23 has length b+ c− 2, the
composition word may not be longer then a+ b+ c− 3.

All letters of the composition word are associated with a distinct positions except for the coding
of two dimensional integer points implying special letters. The bound on the length of χ ensures
that all letters of χ are in correspondence with positions before a + b + c and thus, before the
first integer point is crossed be the cutting sequence. Thus using the method of synchronization

either there is no collision or if there is a special letter of the form
←→
ab and both cases leads to a

synchronized word.

When building a discrete segment, if the composition contains special letter of the form
←→
ab,

each special letter must be replaced by a corresponding pair of letters.
Regarding the palindromicity of central words, it is obvious that there exists a choice that leads

to a palindromic composition words if and only if the number of special letters is even. In such
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case, it suffices to replace special letters of the form
←→
ab by, say, ab on the left part of the word and

by ba on the right side. On the other hand, an odd number of special letter forces that one of them
is located in the center of the word so that neither the choice ab or ba may yield a palindrome.
For instance, as shown in Figure 8, for vector (6, 4, 3) no matter what are the choices for the three
special letters, the resulting word may never be palindromic.

Figure 8: Two discrete segments for vector (6, 4, 3). On the left, the special letters
←→
13,
←→
12 and

←→
13 are replaced

respectively by 13, 12 and 13, leading to the discrete segment
←→
123 1213121321, while on the right special letters

←→
13,

←→
12 and

←→
13 are replaced by 31, 21 and 31 leading to

←→
123 1231213121.

Finally, we remark that the choices made for special letters allow to form object that do not
always correspond to any of the classical definitions of discrete segments.

5. Experimentations

The goal of this section is to investigate the properties of the central discrete segments in terms
of balancedness, palindromicity and distance to the real segment.

In the case where gcd(a, b, c) = 1 but at least one of the gcd(a, b), gcd(a, c), gcd(b, c) is greater
than one, as seen previously, there is a non-trivial choice for each special letter. We now focus
on experimental observation in order to observe the effect of those non-trivial choices on some
combinatorial and geometric properties of the composition word.

Given a composition word w containing k ≥ 1 special letters, a specific choice for those special
letters is described by a list of k bits. We thus represent those choices by a vector [c1, c2, . . . , ck]

where ci = 0 if the i-th special letter
←→
ab is replaced by ab and ci = 1 if

←→
ab is replaced by ba (see

Figure 9).
The property called distance is defined as follow. Given a point p ∈ R3 and a line l ⊂ R3, we

note d(p, l) the distance from the point p to the line l. Given a word w ∈ {1, 2, 3}∗, the distance
from w to the real line l is the maximal distance from one of the points of the path w (w being seen
as a Freeman code) to l. More precisely, the distance from w to l is max{d(−→p , l) | p is a prefix of w}.
Let W be the discrete segment for vector (a, b, c). If W does not contain any special letter, then
the property called distance of W the distance from W to the line l that passes through the origin
and (a, b, c). On the other hand, if W does contain special letters, then there each choice for the
special letters defines a word on {1, 2, 3}. Among these choices those that minimizes the distance of
W to the line l are called minimal choices and the minimal distance of W is the distance obtained
by its minimal choices.

• Vector (5, 5, 3)
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Figure 9: Vector (5, 5, 3) produces the composition word
←→
123
←→
12
←→
123
←→
12. On the left, the composition choice,

[0, 0, 0, 0]→ 1231212312 and, on the right, the choice [1, 0, 1, 0]→ 2131221312.

(C(1,2)(1, 1))
5 =

−→
1
←→
12
←→
12
←→
12
←→
12
←−
2 , w12 =

←→
12
←→
12
←→
12
←→
12,

(C(3,1)(3, 5))
1 =

−→
3 131131

←−
1 , w31 = 131131,

(C(2,3)(5, 3))
1 =

−→
2 232232

←−
3 , u23 = 232232,

χ =
←→
123
←→
12
←→
123
←→
12.

Each of the four special letters
←→
12 may be replaced by either 12 or 21 in order to obtain a

word on {1, 2, 3}. This sums up to 16 possibles choices. Among those choices, only two allow
to achieve minimum balance and five yield to palindromes :

– Minimum balance : 1.

[0, 0, 0, 0]→ 12 · 3 · 12 · 12 · 3 · 12.
[1, 1, 1, 1]→ 21 · 3 · 21 · 21 · 3 · 21.

– Palindromes

[0, 0, 1, 1]→ 12 · 3 · 12 · 21 · 3 · 21.
[0, 1, 0, 1]→ 12 · 3 · 21 · 12 · 3 · 21.
[1, 0, 1, 0]→ 21 · 3 · 12 · 21 · 3 · 12.
[1, 1, 0, 0]→ 21 · 3 · 21 · 12 · 3 · 12.

– Distance. In this particular case it appears that all 16 choices are minimal choices that
all yield to the distance

√
42/59 ≈ 0.844.

This shows that even though specific a choice allows to obtain a balanced word or a palin-
drome, unlike in dimension two both properties may not happen at the same time.

• Vector (3, 4, 8)

(C(1,2)(3, 4))
1 =

−→
1 21212

←−
2 , w12 = 21212,

(C(3,1)(8, 3))
1 =

−→
3 331333133

←−
1 , w31 = 331333133,

(C(2,3)(1, 2))
4 =

−→
2 3
←→
23 3
←→
23 3
←→
23 3
←−
3 , w23 = 3

←→
23 3
←→
23 3
←→
23 3,

χ = 3
←→
23 1 3

←→
23 3 1

←→
23 3.

– Minimum balance : 1.

[0, 0, 1]→ 3 · 23 · 13 · 23 · 31 · 32 · 3.
14



Figure 10: Vector (3, 4, 8) produces the composition word 3
←→
23 13

←→
23 31

←→
23 3. On the left, the composition choice,

[0, 0, 0]→ 323132331233 and, on the right, the choice [0, 1, 1]→ 323133231323.

[0, 1, 1]→ 3 · 23 · 13 · 32 · 31 · 32 · 3.

– Palindromes : since χ has an odd number of special letters, no choice leads to a palin-
drome.

– Distance. The minimal distance is
√
69/89 ≈ 0.881 and is achieved only with the

following choices :

[0, 0, 0]→ 3 · 23 · 13 · 23 · 31 · 23 · 3.

This example shows that in some cases, the smallest balance may not be reached by applying
the same choice everywhere. Moreover, in this case, the choice that minimizes the distance
does not minimize balance.

Figure 11: Vector (15, 10, 6), with [1, 1, 1, 1, 1, 1, 1]→ 1213 · 21 · 12 · 31 · 21 · 1 · 32 · 1 · 21 · 31 · 21 · 21 · 3121.
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• Vector (15, 10, 6)

(C(1,2)(3, 2))
5 =

−→
1 121

←→
12121

←→
12121

←→
12121

←→
12121

←−
2 ,

(C(3,1)(2, 5))
3 =

−→
3 11311

←→
1311311

←→
1311311

←−
1 ,

(C(2,3)(5, 3))
2 =

−→
2 232232

←→
23232232

←−
3 ,

w12 = 121
←→
12121

←→
12121

←→
12121

←→
12121,

w31 = 11311
←→
1311311

←→
1311311,

w23 = 232232
←→
23232232,

χ = 1213
←→
12 12

←→
13
←→
121
←→
231
←→
12
←→
1321

←→
123121.

Vector (15, 10, 6) is the smallest with the property that gcd(a, b, c) = 1 but gcd(a, b), gcd(a, c)
and gcd(b, c) are all greater than one. The composition word χ contains seven special letters
leading to 128 possible choices.

– Minimum balance : 2. This balance is achieved by all 128 possible choices which means
that no choice leads to a balance of 1.

– Palindromes : since χ has an odd number of special letters, no choice leads to a palin-
drome.

– Distance. The two following choices yeild the minimal distance of 2/19
√
65 ≈ 0.849.

[0, 1, 1, 1, 1, 1, 1]→ 1213 · 12 · 12 · 31 · 21 · 1 · 32 · 1 · 21 · 31 · 21 · 21 · 3121.
[1, 1, 1, 1, 1, 1, 1]→ 1213 · 21 · 12 · 31 · 21 · 1 · 32 · 1 · 21 · 31 · 21 · 21 · 3121.

6. Composition algorithm on discrete planes

Even though we have focused on the application of the composition algorithm on Christoffel
words, we recall that this algorithm may be used on any triplet of words as long as their respective
alphabets coincide. We now consider triplets of words defined from discrete planes. We use the
arithmetical definition of discrete planes introduced in [Rev91].

Definition 6.1.

• A voxel is a unit cube aligned with the axes whose center has integer coordinates. If (x, y, z)
is the center of the voxel V , by convention, we say that V is located in (x, y, z).

• Each face of a voxel is called a surfel.

• Given a normal vector v = (a, b, c) ∈ R3, the arithmetic discrete plane P (a, b, c, µ, ω) is
defined as the set of voxels located in (x, y, z) satisfying the double inequality

0 ≤ ax+ by + cz − µ < ω

where the two parameters µ and ω are, respectively, the intercept and the thickness.

In order to define words on a discrete plane, we first introduce the notion of surface and stripes.
Each surfel is adjacent to exactly two voxels. A surfel is called visible if, among its two adjacent
voxels, one is in the discrete plane and the other is not. When the thickness ω is large enough, the
visible surfels form two infinite and simply connected surfaces. For more details on discrete planes
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and their topology see [AAS97]. We only consider the case where the intercept µ = 0, thickness
ω =∞ and where the normal vector is positive, that is a, b, c > 0. Such a discrete plane is simply
denoted P (a, b, c). Note that by fixing the thickness to infinity, the voxels that are include in the
plane are those located in (x, y, z) satisfying ax+ by+ cz ≥ 0 and the visible surfels form only one
surface.

Definition 6.2. A corner of a digital plane P (a, b, c) is a voxel (x, y, z) ∈ P (a, b, c) such that
(x− 1, y, z), (x, y − 1, z), (x, y, z − 1) 6∈ P (a, b, c).

Since voxels are aligned with the axes, each surfel is normal to one of the vectors ei. Using the
convention that ei 7→ i, a surfel is associated with a letter in {1, 2, 3} and a path on a surface made
of surfel defines a word. A surfel normal to ei is called of type i.

Definition 6.3. Let A ∈ Z, a x-stripe of P (a, b, c) is the set of visible surfels intersected by the real
plane {(A, y, z) | y, z ∈ R}.

Figure 12: Three stripes defined by a corner on a discrete plane.

The y-stripes and z-stripes are defined in a similar way so that any corner of a discrete plane
defines three stripes (see Figure 12). Each of these tripes define a biinfinite path of surfels on the
discrete surface.

Let V be a corner located in (x, y, z) in a discrete plane P (a, b, c). For i = 1, 2, 3, let Si be a
visible surfel of type i adjacent to V . Each Si in intersected by exactly two stripes. For instance,
S1 is intersected by a y-stripe and a z-stripe, while S2 is intersected by the same z-string and an
x-stripe. Let Sx be the biinfinite sequence of surfel intersected by the x-stripe. The sequences Sy
and Sz are defined similarly so that we have:

Sz = S12 · S1 · S2 · S ′12,
Sy = S31 · S3 · S1 · S ′31,
Sx = S23 · S2 · S3 · S ′23,

where Sij is a left-infinite sequence of surfels of types i and j and S ′ij is a right-infinite sequence of
surfels also of types i and j. From the six infinite sequences we define the six infinite words Wij

and W ′
ij as follow :

W12 = Φ(S̃12), W31 = Φ(S̃31), W23 = Φ(S̃23), W ′
12 = Φ(S ′12), W ′

31 = Φ(S ′31), W ′
23 = Φ(S ′23),
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Figure 13: Six infinite words defined from a corner, on both cases exactly one word starts from each of the visible
surfels of the corner. On the left, starting from S1 (in red) the word 1 ·W12 = 1 · 21121 · · · , starting from S2 (in
green) the word 2 ·W23 = 2 ·32232 · · · , and from S3 (in blue) the word 3 ·W31 = 3 ·333133 · · · . On the right, starting
from S1 (in red) the word 1 ·W ′

31 = 1 · 333133 · · · , starting from S2 (in green) the word 2 ·W ′

12 = 2 · 212212 · · · , and
from S3 (in blue) the word 3 ·W ′

23 = 3 · 323323 · · · .

where S̃ is the reversal of the sequence S and Φ(S) is the word obtained by replacing each surfel
of S by its type. Figure 13 illustrates this construction.

Being written on appropriate alphabets, theses infinite words may be used as input for the
composition algorithm. Each corner of a discrete plane defines two planar composition words χ0

and χ1 as follow :

• χ0 is the output of Algorithm 1 with the input W12, W31, W23.

• χ1 is the output of Algorithm 1 with the input W ′
12, W

′
31, W

′
23.

Figure 14 illustrates the construction of planar composition words. In the case where these
two words are finite, two planar composition vectors are defined as λ0 = −→χ0 + (1, 1, 1) and λ1 =
−→χ1+(1, 1, 1). Vector (1, 1, 1) is added to the abelianized of the planar composition words since the
letter given by the three surfels S1, S2, S3 were not considered in the composition process.

6.1. Composition vectors from a rational plane

In this section we show that on well chosen corners of a discrete plane with a rational normal
vector, the composition vectors are equal to the normal vector.

Definition 6.4. Given a normal vector v = (a, b, c) ∈ R3, the height of a point u = (x, y, z) ∈ R3 is
the scalar product 〈u, v〉 = ax+ by + cz.

By analogy, we call the height of voxel the height of its center. Obviously, the voxels adjacent
to visible surfels are those whose heights are in [0,max(|a|, |b|, |c|)] and the corners are those whose
heights are in [0,min(|a|, |b|, |c|)]. In the case where v = (a, b, c) ∈ N3 with a, b, c > 0, then the
finite patterns of P (a, b, c) are repeated according to a regular lattice. In fact, P (a, b, c) is invariant
by translation of any vector (x, y, z) such that ax + by + cz = 0. This implies that two corners
having the same height produce the same composition vectors.

Theorem 6.5. Given (a, b, c) ∈ N3 with a, b, c > 0 and gcd(a, b, c) = 1, let V0 be the voxel centered
at (0, 0, 0), then V0 is a corner of P (a, b, c) and the planar composition words obtained from V0 are
finite and the planar composition vectors are such that λ0 = λ1 = (a, b, c).
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Figure 14: Two planar compositions from (0, 0, 0) in P (4, 7, 13). On the left, the three stripes determine the words :
1 ·W12 = 1 ·2122122122 · · · (shown in red and green), 3 ·W31 = 3 ·3331333133313331 · · · (shown in red and blue) and
2 ·W23 = 2 · 3233233233233233233 · · · . The planar composition word is obtained is χ0 = 323312332313233213323
and the planar composition vector correspond to the normal λ0 = (4, 7, 13). Colored surfels are those successfully
used in the composition algorithm. On the right, same thing for χ1.

Proof. The voxel V0 is a corner of P (a, b, c) since V0 ∈ P (a, b, c) while V0 − e1, V0 − e2, V0 − e3 are
not. First, we show that starting from V0, the words read on the three stripes are the compatible
Christoffel C(1,2)(a, b), C(3,1)(c, a) and C(2,3)(b, c). Then Theorem 4.3 implies that both composition
vectors are (a, b, c).

x

y

Figure 15: Side view of the z-stripe that passes at the origin of the discrete plane D(3, 5, 7). Integer points of Z3 are
displayed by dots, voxels of the discrete plane are shown in gray and the thicker line shows the visible surfels. The
arrow shows the surfel that are read starting from the visible surfel normal to the x axis adjacent to the origin. The
word read is 1 ·W12 = 1 · 2122122 · · · . The dashed line illustrates the analogy with the definition of Christoffel words
(see Figure 1).

By the construction the plane P (a, b, c) is the set of voxels located in (x, y, z) with ax + by +

19



cz ≥ 0. By fixing z = 0, the stripe forms a 4-connected path that starts in (−1/2,−1/2, 0),
passes through (a − 1/2, b − 1/2, 0) and stays as close as possible to the real straight line joining
these two points while staying above it (see Figure 15). Up to a translation and a symmetry,
Christoffel words are constructed exactly the same way. Let k1 = gcd(a, b), k2 = gcd(a, c) and
k3 = gcd(b, c) and pose u12, u31 and u23 as the central words satisfying C(1,2)(a/k1, b/k1) = 1·u12 ·2,
C(3,1)(c/k2, a/k2) = 3 · u31 · 1 and C(2,3)(b/k3, c/k3) = 2 · u23 · 3. We have:

(u1221)
k1 is a prefix of W12, (u1212)

k1 is a prefix of W ′
12,

(u3113)
k2 is a prefix of W31, and (u3131)

k2 is a prefix of W ′
31,

(u2332)
k3 is a prefix of W23, (u2323)

k3 is a prefix of W ′
23,

The situation is similar to the hypothesis of Theorem 4.3 up to the difference that if k1 > 1,
then the central words in u12 are separated by the pair of letter 21 instead of the special letter

←→
12.

This is not a problem since Lemma 4.2 ensures that the corresponding letters will be read on the
two other words. Same thing holds for u31 and u23. So, by theorem Theorem 4.3 in both cases, the
first a+ b+ c− 3 iterations of the composition algorithm reads these prefixes and the compositions
words χ0 = χ1 with −→χ0 =

−→χ1 = (a− 1, b− 1, c− 1) are constructed. Then, at the (a+ b+ c− 2)-th
iteration, in the case of the computation of χ0, we have X[1] = 2, Y [1] = 1 and Z[1] = 3 and in
the case of the computation of χ1 we have X[1] = 1, Y [1] = 3 and Z[1] = 2. Thus, in both cases,
the algorithm stops and the finite words χ0 and χ1 are returned.

A natural question that arises from the previous theorem is to describe the composition vectors
obtained from other corners than the origin. As shown in Table 1, these vectors seems to form
successive approximations of the normal vector.

Corner’s height λ0 λ1

0 (4,7,13) (4,7,13 )

1 (1,2,3) (3,5,10 )

2 (1,2,3) (2,3,6 )

3 (1,2,3) (1,1,2 )

Corner’s height λ0 λ1

0 (40, 29, 16) (40, 29, 16)

1 (40, 29, 16) (40, 29, 16)

2 (25, 18, 10) (15, 11, 6)

3 (25, 18, 10) (15, 11, 6)

4 (10, 7, 4) (15, 11, 6)

5 (10, 7, 4) (15, 11, 6)

6 (10, 7, 4) (5, 4, 2)

7 (7, 5, 3) (3, 2, 1)

8 (3, 2, 1) (2, 2, 1)

9 (3, 2, 1) (2, 2, 1)

10 (3, 2, 1) (2, 2, 1)

11 (3, 2, 1) (2, 2, 1)

12 (3, 2, 1) (2, 2, 1)

13 (1, 1, 1) (2, 2, 1)

14 (1, 1, 1) (2, 2, 1)

15 (1, 1, 1) (2, 2, 1)

Table 1: Exemple of planar composition vectors computed on the different corners of a discrete planes. On the left,
the normal vector is (4, 7, 13) and (40, 29, 16) on the right.

We suspect these composition vectors to be related with the successive approximations of the
normal vector obtained from a multidimensional continued fraction algorithm. Indeed, develop-
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ments in discrete geometry have successfully linked the structure of discrete lines with the continued
fraction development of its slope [BS02, Pyt02]. While there exist no canonical expansion to con-
tinued fractions in higher dimension, numerous generalizations of Euclid’s algorithm have been
studied. Links between the structure of discrete planes and generalized continued fraction algo-
rithms applied on the normal vector have been showed via the use of substitutions [ABEI01, Fer09].
In a different approach, works on the connectivity of thin discrete planes have showed that the
generalized continued fraction algorithm called fully subtractive intervenes naturally in the study
of discrete planes [DJT09, BJJP13]. We propose as an open question to explicit a link between
the composition vectors and generalized continued fraction algorithms.

The following proposition states that on a rational plane, no corner may provide a better
synchronization than the origin.

Proposition 6.6. Given (a, b, c) ∈ N3 with a, b, c > 0 and gcd(a, b, c) = 1. Let χ be one of the two
planar composition word computed a corner of P (a, b, c), then |χ| ≤ a+ b+ c− 3.

Proof. Since a, b, c ∈ N, all x-stripes define the same periodic biinfinite word with period pattern
C(1,2)(a, b). The same holds for the two other type of stripes.

W.l.o.g. suppose that the planar composition word computed is χ0. Starting from a given
corner, the three words read on the stripes will begin by the following prefixes :

• W12 begins with U12 · 21 which is conjugate to C(1,2)(a, b).

• W31 begins with U31 · 13 which is conjugate to C(3,1)(c, a).

• W23 begins with U23 · 32 which is conjugate to C(2,3)(b, c).

Note that since stripes are read starting from a corner, each conjugate ends with two different
letters.

Now, lets consider the execution of the composition algorithm with these three words as input.
If the process stops before any of the words U12, U31 or U23, has been completely read, then the
result holds. On the other hand, w.l.o.g. suppose that U12 is the first of the three words has
been completely read. Then since there are exactly as many occurrences of the letter 1 in U12

then in U31, what is left te read in U31 is only occurrences of the letter 3. The same holds for
U23 which contains the same number of occurences of the letter 3 then U31. Those letters will
now synchronize and, when all three words U12, U31 and U23 have been read, we have X[1] = 2,
Y [1] = 1 and Z[1] = 3. The process stops and χ0 is returned with |χ0| = a+ b+ c− 3.

6.2. Composition on irrational discrete planes and conjectures

We now consider the composition words obtained from discrete planes with irrational normal
vector.

Theorem 6.7. Given an irrational vector (α, β, γ) with α, β, γ > 0, the voxel V0 centered at (0, 0, 0)
is a corner of P (α, β, γ) and the composition words obtained from V0 are infinite.

Proof. The fact that V0 is a corner of P (α, β, γ) is obtained as is Theorem 6.5. By construction,
near the V0, we find three standard Sturmian words S1, S2 and S3. Each Sturmian words is given
by ∪i=1,2{nαi |n ∈ N − {0}} or ∪i=1,3{nαi |n ∈ N − {0}} or ∪i=2,3{nαi |n ∈ N − {0}} with

α1 = α+β+γ
α

, α2 = α+β+γ
β

, α3 = α+β+γ
γ

. As the normal is totally irrational there is no rational
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relation between α, β and γ thus no collision in the three jump words and no collision in the union
of the three jump words that is in ∪3i=1{nαi |n ∈ N−{0}}. In other terms, letters in the jump word
∪3i=1{nαi |n ∈ N − {0}} are two by two distinct. Otherwise, if there is a collision of two letters
(for example for the letters 1 and 2) this means that ∃ℓ,m ∈ N such that ℓα+β+γ

α
= mα+β+γ

β

and this is impossible because the normal is irrational. Thus our algorithm of synchronization
pick up the letters one by one and never stops and thus construct an infinite billiard word by the
synchronization of three standard Sturmian words with α1 =

α+β+γ
α

, α2 =
α+β+γ

β
, α3 =

α+β+γ
γ

.

We believe that such an infinite synchronization may only happen in this specific case, that
is with an irrational normal vector and starting from the origin. From our observations of the
rational and irrational case, we provide the following conjecture.

Conjecture 6.8. Given a vector (a, b, c) with a, b, c > 0, let V and V ′ be two corners of P (a, b, c).
Let χ0, χ1 be the planar composition words computed at V and χ′

0, χ
′
1 those computed at V ′, then

• If V is not centered at the origin then χ0 and χ1 are a finite words,

• height(V ) ≤ height(V ′) =⇒ (|χ0| ≥ |χ′
0|) and (|χ1| ≥ |χ′

1|).

7. Conclusion

In this paper, we investigate the first step in the study of synchronization of Christoffel words.
Our ambitious goal was to design Christoffel words in dimension three by composition of three usual
Christoffel words. This idea is driven by the search of a fundamental object to prove an analogous
version of the theorem “Lyndon + Christoffel = Digitally Convex” [BLPR09] and thus obtain a
more combinatorial notion of digital convexity in dimension three. We present some construction
on discrete planes but wonder about the corresponding constructions for discrete surfaces given by
implicit formula ? May an efficient normal estimator be derived from this technique ?
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5(1):23–51, 1993.
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[Rau82] G. Rauzy. Nombres algébriques et substitutions. Bull. Soc. Math. France, 110(2):147–178, 1982.
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