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161 rue Ada, 34000 Montpellier, France.

bLAMA - UMR 5127 CNRS, Université de Savoie,
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Abstract

Using a combinatorial characterization of digital convexity based on words,
one defines the language of convex words. The complement of this language
forms an ideal whose minimal elements, with respect to the factorial order-
ing, appear to have a particular combinatorial structure very close to the
Christoffel words. In this paper, those words are completely characterized
as those of the form uwkv where k ≥ 1, w = u · v and u, v, w are Christof-
fel words. Also, by considering the most balanced among the unbalanced
words, we obtain a second characterization for a special class of the minimal
non-convex words that are of the form u2v2 corresponding to the case k = 1
in the previous form.

1. Introduction

In computer imagery, polyominoes, that are defined as the interior of
a closed non-intersecting grid path of Z2, are used to represent discretized
objects from the real world. Given such a polyomino, one may ask whether
the real discretized object is convex or not. From this comes the notion of
digital convexity. We say that a polyomino P is digitally convex if its convex
hull contains no points of Z2 outside of P (see Eckhardt (2001) for a review
on digital convexity).

Over the last 40 years, many characterizations of digital convexity have
been stated. Recently, a new one, based completely on words combinatoric
was established in Brlek et al. (2009). It uses the Freeman chain code to
represent the boundary of a hv-convex polyomino P by a word over a four
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letter alphabet; this word is then split into four quadrant words, each being
written over a two letter alphabet. It was shown that P is digitally convex
if and only if the unique factorization as decreasing Lyndon words of each
of its quadrant words is composed of only Christoffel words. Moreover, in
the case of a digitally convex polyomino, its convex hull is directly given by
the Lyndon factorization.
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Figure 1: Left: A convex polyomino with North-West quadrant word 1001010100010 =
(1, 0010101, 0001, 0)Lyn. Right: a non-convex polyomino with North-West quadrant word
1010001100100 = (1, 01, 00011001, 00)Lyn.

Following this characterization, we define the set of convex words CV
over a two letter alphabet and show that its complement NC = CVc is
generated by a set of minimal length words NCM which are related to, but
are not, Christoffel words.

Also, we show that a special class of words of NCM are the limit case of
the application of a theorem by Berstel and de Luca stating that Christoffel
words are the balanced Lyndon words. It is well known that central words
of Christoffel words are the limit case of the application of the Fine and Wilf
theorem (see Fine and Wilf (1965)). Indeed, any non-trivial Christoffel word
aub is such that u admits two periods p and q such that |u| = p+ q− 2 and
gcd(p, q) = 1 but, in general, u does not admit period 1. In a similar way,
we show that the basic words of NCM, which are Lyndon words but not
Christoffel words, are almost balanced that is they admit exactly one pair of
unbalanced factors. More precisely, we show that basic words of NCM are
exactly the minimal words, with respect to the factorial order, having this
property.

This paper is structured as follows. Section 2 introduces basic definitions
and previous results. Section 3 defines the set of minimal non-convex words
and Section 4 provides our general characterization of these words. Section
5 is dedicated to the link between minimal non-convex words and minimal
almost balanced words. Section 6 generalizes to words over a four letter
alphabet, that is any word coding the boundary of a polyomino. Finally
Section 7 concludes briefly.
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2. Preliminaries

We use the four letter alphabet {0, 1, 0, 1} to encode polyominoes with
the convention that its boundary is coded in a clockwise manner where 0
codes a step to the right, 1 codes a step up, 0 is for a step left and 1 for
a step down. The word coding the boundary of a polyomino is called its
boundary word.

Definition 1. Given w the boundary word of a hv-convex polyomino P , a
factor of ww is called a quadrant word if it is a non-expendable word written
over a two letter alphabet.

We refer the reader to Lothaire (1997) for basic notations and definitions
of words. Throughout this paper, the term Christoffel word designates what
some authors call primitive lower Christoffel word. We denote the set of
all Christoffel words C and the set of Lyndon words Lyn. Even though
the concatenation of words is written in a multiplicative way, we use the
notation w = (x1, x2, . . . , xn)F when w factorizes as x1 · x2 · · ·xn according
to a criterion F.

Notation 2. Given a word w, its unique factorization as decreasing Lyndon
words w = l1l2 · · · lm is noted w = (l1, l2, . . . , lm)Lyn.

We recall the combinatorial characterization of digital convexity stated
in Brlek et al. (2009):

Theorem 3 (Brlek et al. (2009), Proposition 7). A polyomino is dig-
itally convex if and only if each one of its quadrant words w is such that
w = (l1, l2, . . . , lm)Lyn with li ∈ C for all 1 ≤ i ≤ m.

From this, we define CV = {(l1, l2, . . . , lm)Lyn | li ∈ C for all 1 ≤ i ≤
m}. For technical reasons, we assume that ε ∈ CV.

2.1. Some Properties of Christoffel words
Since Borel and Laubie reinvestigated the Christoffel words (see Borel

and Laubie (1993) and Christoffel (1875)) their impressive combinatorial
structure has been studied by many authors. We present here only a few of
these properties; we refer the reader to Berstel et al. (2009) for a compre-
hensive self-contained survey on Christoffel words. We consider Christoffel
words over the two letter alphabet A = {a, b} with a < b, and this order is
extended to words using lexicographic order.
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Over A, a word w is said to be balanced if for all u, v ∈ Factor(w):

|u| = |v| =⇒ δ(u, v) ≤ 1,

where δ(u, v) = ||u|a − |v|a|. Note that since we only consider a two letter
alphabet, when u and v have same length, we also have δ(u, v) = ||u|b−|v|b|.
A pair u, v such that δ(u, v) > 1 is called unbalanced. See Vuillon (2003) for
a survey on balanced words and their generalizations.

Christoffel words are strongly related to the balance property. Indeed,
the following results provide two different characterizations of Christoffel
words using this notion.

Theorem 4 (Berstel and de Luca (1997), Theorem 3.2). The set of
Christoffel words is exactly the set of balanced Lyndon words.

Theorem 5 (de Luca and Mignosi (1994), Corollary 1). Given a word
u ∈ A∗, the words aua, aub, bua and bub are balanced if and only if aub ∈ C.

Consider the functions P, S : A+ → C defined as follows: P (w) (resp.
S(w)) is the longest proper prefix (resp. proper suffix) of w that is a Christof-
fel word. These functions are well defined since {a, b} ∈ C. Also, given
x, y ∈ A∗ , define x⊕ y = |x|a|y|b − |x|b|y|a,

Theorem 6 (Borel and Laubie (1993)). Given x, y ∈ C, the word w =
xy is a Christoffel word if and only if x ⊕ y = 1. In such case, x = P (w),
y = S(w), u < w < v and w = x · y is the only factorization of w as two
Christoffel words.

This is called the standard decomposition of w and is denoted w = (x, y)C.
Theorem 7 gives another well known characterization of Christoffel words.
First, define the functions G and D as follows:

G,D : C \ {a, b} −→ C

G(u, v)C = (u, uv)C,
D(u, v)C = (uv, v)C.

Theorem 7 (Borel and Laubie (1993); Berstel and de Luca (1997)).
A word w is a non-trivial Christoffel word if and only if there exists a unique
sequence H1, H2, . . . ,Hk ∈ {G,D} such that

w = H1 ◦H2 ◦ · · · ◦Hk(a, b)C.
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Given a Christoffel word w = (u, v)C, this last result imposes a strict
structure on w in terms of the standard factorizations of u and v.

We conclude this section by recalling a nice combinatorial property of
Christoffel words. Any non-trivial Christoffel word w may be written as w =
aw′b, in such case the word w′ is called a central word. Using the notation

for the involution that maps a on b and b on a, the set of Christoffel word
is closed by the application of to the central words.

Property 8 (de Luca and Mignosi (1994)). Given any word u ∈ A∗,
aub ∈ CP if and only if aub ∈ C.

This property is a direct consequence of Theorem 5 since δ(u, v) = δ(u, v)
for all u, v ∈ A∗ having same length.

3. Convex and non-convex words

Proposition 9 (Reutenauer (2008)). The language CV is factorial.

Proof. Let w = xyz ∈ CV, we show that y ∈ CV. Consider the Lyndon
factorization w = (l1, l2, . . . , lnw)Lyn. Since w is a convex word, each li is a
Christoffel word and by Theorem 4 it is balanced. There are two cases to
consider.

– There exist 1 ≤ k ≤ nw such that y is a factor of lk. In this case, each
factor of the Lyndon factorization of y is also a factor of lk. Since the
balance property is factorial, the Lyndon factorization of y contains only
Christoffel words and y ∈ CV.

w
l1 · · · lp lp+1 · · · lq−1 lq · · · lnw

y
α y′ β

Figure 2: Illustration of the second case.

– There exist p < q such that y = αlp+1lp+2 · · · lq−1β where α ∈ Suffix(lp)
and β ∈ Prefix(lq), as illustrated in Figure 2. In such case, let α =
(a1, a2, . . . , anα)Lyn and β = (b1, b2, . . . , bnβ )Lyn. Since each word li is
balanced, we have that each ai and each bi is a Christoffel words. Now,
by construction we have

a1 ≥ a2 ≥ · · · ≥ anα ≥ lp ≥ lp+1 ≥ · · · ≥ lq−1 ≥ lq ≥ b1 ≥ b2 ≥ · · · ≥ bnβ .
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We conclude that the unique factorization of y as decreasing Lyndon words
is y = (a1, . . . , anα , lp+1, . . . , lq−1, b1, . . . , bnβ )Lyn ∈ CV.

�
From a geometrical point of view, Proposition 9 simply expresses the

obvious fact that each part of the border of a convex shape is convex. On
the other hand it implies that the language of non-convex words NC = CVc

is an ideal of the monoid A∗. A natural question is to identify the generators
of this ideal. These generators are minimum non-convex words with respect
to the factorial order, more precisely the set

NCM = {w ∈ NC | ∀x ∈ Factor(w), u 6= w =⇒ u ∈ CV}.

By definition, a word w ∈ NCM cannot admit any other word of NCM
as a proper factor. Moreover, note that on a two letter alphabet, all words
of length smaller of equal to 3 are in CV. Clearly, NC is an ideal of A∗
generated by the set NCM.
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Figure 3: The North-West part of a polyomino with its convex hull in yellow, showing
that it is not digitally convex. The part the boundary corresponding to the word aababb ∈
NCM is highlight in red.

n NCM ∩ An

4 {aabb}
6 {aaabab, aababb, ababbb}
8 {aaaabaab, aabababb, abbabbbb}
9 {aaabaabab, ababbabbb}
10 {aaaaabaaab, aabaababab, aababababb, abababbabb, abbbabbbbb}

Table 1: Elements of NCM of length up to 10.
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4. Characterization of NCM

This first result about the set NCM is a consequence of Theorem 3.

Lemma 10 (Reutenauer (2008)). NCM ⊂ Lyn.

Proof. We argue by contradiction. Let w ∈ NCM and suppose that
w 6∈ Lyn. Consider (l1, l2, . . . , lm)Lyn = w with m > 1. Since w is not
convex, by Theorem 3 there exists 1 ≤ i ≤ m such that li 6∈ C. This word
li 6∈ CV contradicting the factorial minimality of w. �

We can now establish a complete characterization of the set NCM.

Theorem 11. NCM = {uwkv | (u, v)C = w ∈ C and k ≥ 1}.

In order to prove this Theorem, we need to introduce some combinatorial
tools. The complete proof is given in Section 4.2

4.1. Left and right factorizations
In order to analyse the inner structure of a Christoffel word w, we in-

troduce the two following factorizations, each being obtained by iteration
of the standard factorization of a Christoffel word. The right factorization
of w recursively decomposes its suffixes while the left factorization does the
same for prefixes.

Definition 12. Given w ∈ C\{a, b}, let m be the smallest integer such that
Sm+1(w) = b and for 0 ≤ k ≤ m, let (uk, vk) = Sk(w). The factorization
w = u0 · u1 · · ·um · b is called the right factorization of w and is denoted
w = (u0, u1, . . . , um1 , b)R

Definition 13. Given w ∈ C \ {a, b}, let m′ be the smallest integer such
that Pm′+1(w) = a, and for 0 ≤ k ≤ m′, let (uk, vk) = Pm′−k(w). The
factorization w = a · v0 · v1 · · · vm′ is called the left factorization of w and is
denoted w = (a, v0, v1, . . . , vm′)L

By abuse of notation, we write a = (a)L and b = (b)R. Table 2 shows how
left and right factorizations of the word w = aabaababaabab are obtained.
In this example, both factorizations have the same length while it is not the
case in general; for example: aaaab = (a, aaab)L = (a, a, a, a, b)R. Note that
given a Christoffel word, both these factorization exist and are unique.

Property 14. Let w ∈ C such that w = (u, v). If for some x, y ∈ C:
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Left factorization
(a a b a a b a b , a a b a b)

u2 v2
(a a b , a a b a b)
u1 v1

(a, a b)
a v0

Right factorization
(a a b a a b a b, a a b a b)

u0 v0
(a a b, a b)
u1 v1

(a , b)
u2 b

Table 2: The left factorization (a, ab, aabab, aabab)L and the right factorization
(aabaabab, aab, a, b)R of w.

(i) u = (x, y)C then w = (xy, (xy)ky)C for some k ≥ 0 and the inequality
x < u < w < v ≤ y holds.

(ii) v = (x, y)C then w = (x(xy)k, xy)C for some k ≥ 0 and the inequality
x ≤ u < w < v < y holds.

Proof. Let w = (u, v)C = ((x, y)C, v)C as in (i). By Theorem 7 there
exist H1, H2, . . . ,Hk ∈ {G,D} such that w = H1 ◦ H2 ◦ · · · ◦ Hm(a, b).
Since u 6= a, there exists i such that Hi = D. Let k ≥ 0 be such that
w = Gk ◦D ◦Hl+2 ◦ · · · ◦Hm(a, b) and let (x, y)C = Hk+2 ◦ · · · ◦Hm, then

(u, v)C = Gk ◦D(x, y)C = (xy, (xy)ky)C.

x < u < w since x (resp. u) is a proper prefix of u (resp. w). On the other
hand, w < v since v is proper suffix of the Lyndon word w. Finally, it is
clear that v < y if k ≥ 1 and y = v if k = 0. One shows (ii) in a similar
way. �

Since all Christoffel words are Lyndon words, the previous result implies
a direct link between the standard factorization of a Christoffel word and
the Lyndon factorization of its central word.

Corollary 15. Given w = aub ∈ C with left and right factorizations

w = aub = (a, v0, v1, . . . , vm)L = (u0, u1, . . . , um′ , b)R,

the words ub and au factorize as follows

ub = (v0, v1, . . . , vm)Lyn and au = (u0, u1, . . . , um′)Lyn.

8



4.2. Proof of Theorem 11
In order to prove Theorem 11 we show the equality by inclusion on both

sides.

Lemma 16. {uwkv | (u, v)C = w ∈ C and k ≥ 1} ⊆ NCM.

Proof. Given a non-trivial Christoffel word w = (u, v)C and an integer
k ≥ 1, we show that z = uwkv ∈ NCM. First, we show that z ∈ Lyn \C.
Let p = |u|b, q = |u|a, r = |v|b and s = |v|a. Since the concatenation of u and
v is a Christoffel word, we have that u⊕v = 1. One checks that uwl⊕w = 1
for 0 ≤ l ≤ k so that uwk ∈ C. On the other hand uwk ⊕ v = k + 1 ≥ 2,
implying z 6∈ C. On the other hand, z ∈ Lyn since it is the concatenation
of increasing Lyndon words.

Let z = az′b. Since CV is factorial, all that remains to show is that
az′, z′b ∈ CV. Consider the right factorization of v = (u0, u1, . . . , um, b)L.
In this factorization, each factor ui is a Christoffel word and w = (u, v)C,
v = (u0, v0)C, v0 = (u1, v1)C, and so on. By Proposition 14, the following
inequalities hold:

um ≤ um−1 ≤ · · · ≤ u0 ≤ u ≤ uwk.

Thus, az′ = (uwk, u0, u1, . . . , um)Lyn and all these factors are Christoffel
words, so az′ ∈ CV. One can checks that z′b ∈ CV in a similar way. �

Lemma 17. NCM ⊆ {uwkv | (u, v)C = w ∈ C and k ≥ 1}

Proof. Let z ∈ NCM . Since z is a Lyndon word of length at least 4,
there exists z′ ∈ A+ such that z = az′b. Consider the Lyndon factorization
of z′ = (l1, l2, . . . , lm)Lyn. Since z′ is a convex word, all of those li are
Christoffel words.

For practical reasons, define l0 = a and lm+1 = b. Let α = al1l2 · · · lp
where p = max{0 ≤ i ≤ m | al1l2 · · · li < li+1} + 1. Similarly, let β =
lqlq+1 . . . lm where q = min{1 ≤ j ≤ m + 1 | lj−1 < ljlj+1 · · · lmb} − 1.
This construction is illustrated in Figure 4. Note that by definition of the
Lyndon factorization, we have that li ≥ li+1 for all i ∈ {1, 2, . . . ,m − 1}.
More precisely the minimality of p and the maximality of q imply that

lp > lp+1 and lq−1 > lq. (1)

From the above construction, we have az′ = (α, lp+1, . . . , lm)Lyn and
z′b = (a, l1, l2, . . . , lq−1, β)Lyn. On the other hand, both words az′ and z′b
are convex, implying that α, β ∈ C. So from Corollary 15,

α = (a, l1, l2, . . . , lp)L and β = (lq, lq+1, . . . , lm)R.
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z

a z′ b

l0 l1 l2 · · · lq−1 lq lq+1 · · · lp−1 lp lp+1 · · · lm−1 lm lm+1

α

β

u w w · · · w w v

Figure 4: Factorization of z.

At this point, we claim that there exists u, v, w ∈ C such that u =
al1l2 · · · lq−1, v = lp+1lp+2 · · · lmb and w = lq = lp = (u, v)C so that z = uwkv
where k = p − q + 1 ≥ 1. In order to prove this claim we proceed in three
steps:

(i) p ≥ q.

(ii) u = al1l2 · · · lq−1 ∈ C and v = lp+1lp+2 · · · lmb ∈ C.

(iii) w = lq = lq+1 = · · · = lp = uv.

(i): We proceed by contradiction. Suppose p < q. In this case, one has
that z = (α, lp+1, . . . , lq−1, β)Lyn which contradicts the uniqueness of the
Lyndon factorization since z is a Lyndon word.

(ii): By construction of the left factorization of α, we have li+1 =
(al1l2 · · · li−1, li)C for all i ∈ {1, 2, . . . , p − 1}, so u ∈ C. Similarly, the
construction of the right factorization of β imply li−1 = (li, lili+1 · · · lmb)C
for all i ∈ {q + 1, q + 2, . . . ,m} so v ∈ C.

(iii): Consider (a, l1, l2, . . . , lp)L, the left factorization of α, Property 14
implies that for any i ∈ {1, 2, . . . , p− 1}, let x = al1l2 · · · li−1,

li+1 = (xli)kli with k ≥ 0 =⇒
(
li > li+1 =⇒ |li| < |li+1|

)
. (2)

Similarly, when considering the right factorization of β, Property 14 implies
that for any i ∈ {q, q + 2, . . . ,m− 1}, letting y = li+2 · · · lmb,

li = li+1(li+1y)k with k ≥ 0 =⇒
(
li > li+1 =⇒ |li| > |li+1|

)
. (3)

Now consider any i ∈ {q, q + 1, . . . , p − 1}. Clearly Equations (2) and
(3) force that li = li+1, so lq = lq+1 = · · · = lp. Finally, using Equations (1)
and (2) one concludes that P (lq) = u and similarly, Equations (1) and (3)
imply S(lp) = v. �
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5. Almost balanced words

Using the characterization obtained from theorem 11 we show a string
link between minimal non-convex words and a new class of minimal words
called almost balanced. We defined the set of almost balanced words as

AB = {w ∈ A∗ | ∃! {u, v} ∈ Factor(w) such that |u| = |v| and δ(u, v) > 1}

As in the case of non-convex words, among those words we focus our atten-
tion on the set minimal ones with respect to the factorial order and define
the set of minimal almost balanced words:

ABM = {w ∈ AB | ∀u ∈ Factor(w), u 6= w =⇒ u 6∈ AB} .

By analogy to the characterization of the words of NCM given in the
previous section, we consider the words of the form z = u2v2 where u, v, uv ∈
C. These words correspond to the case z = uwkz with w = (u, v)C and
k = 1, we call those words the basic words of NCM.

Theorem 18. ABM =
{
z, z ∈ A+ | z = u2v2 where u, v, uv ∈ C

}
.

In order to show this, we need some extra results abouts balanced words.
The proof of Theorem 18 appears in section 5.1

We may refine the balance property in order to consider only factor of a
given length. Clearly all words are balanced when considering only factors of
length one. In particular, every non-balance words have a specific maximum
length of factors until which it is balanced.

Theorem 19 (Coven and Hedlund (1973), Lemma 3.06). Given a word
w ∈ A∗ such that for some n ≥ 2, for all u, v ∈ Factor(w)

|u| = |v| < n =⇒ δ(u, v) ≤ 1,

but there exist u, v ∈ Factor(w) such that |u| = |v| = n and δ(u, v) > 1. Then
there exist a palindrome p of length n− 2 such that apa, bpb ∈ Factor(w).

This result allow to establish a general form for the words of ABM.

Lemma 20. Given a word w ∈ ABM , there exist a palindrome p such that
w ∈ {apabpb, bpbapa}.
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Proof. Let u, v be the unique pair of factors of w such that |u| = |v| and
δ(u, v) > 1. By Theorem 19 there exist a palindrome p such that u = apa
and v = bpb and so δ(u, v) = 2. We show that both factors u and v must
be consecutive in w, with no overlap. Without loss of generality, we assume
that the factor u occurs before v in w.

– By contradiction, suppose there exist some non-empty word x such that
uxv is a factor of w. In such case, |ux| = |xv| and δ(ux, xv) = δ(u, v) = 2
but u, v is suppose to be the unique unbalanced pair. Contradiction.

– Again by contradiction, suppose the two factors u and v overlap in w, that
is there exist a factor x of w such that u ∈ Prefix(x) and v ∈ Suffix(x) but
|x| < |u| + |v|. Since the last letter of u is different from the first letter
of v, there must be an overlap between the two occurrences of p. Call α
this overlap, as shown in Figure 5, both word aαa and bαb appear in x.

x
u

v
a p a

b p b
a α a b α a b α b

Figure 5: The overlap α of the two occurrences of p appears in the prefix αa and in the
suffix bα.

Again, we obtain a second pair of unbalanced factors: |aαa| = |bαb| and
δ(aαa, bαb) = 2. Contradiction.

Therefore, w admits a factor of the form apabpb. Finally, since the words
of ABM are minimal with respect to the factorial order, it must be that
w = apabpb. �

We may now proceed with the proof of Theorem 18.

5.1. Proof of Theorem 18
Using the previous Theorem, we begin by providing a general form,

closely related to Christoffel words, for the words of ABM. Then, equiv-
alence between this general form and the one claimed in Theorem 18 is
explicitly given by Lemma 22.

Lemma 21. ABM = {apabpb, bpbapa ∈ A+ | apb ∈ C}.

12



Proof. We start by showing the inclusion from left to right. Let z ∈ ABM,
by Lemma 20, there exist a palindrome p such that z = apabpb (the case
w = bpbaba is similar). It remains to see that apb ∈ C.

By Theorem 5 it suffices to see that apa, apb, bpa and bpb are all balanced.
Using the fact that p is a palindrome and that both words apabp and pabpb
are balanced, we have that for all u, v ∈ Factor {ap, pa, bp, pb}, |u| = |v| =⇒
δ(u, v) ≤ 1. Obviously, the four words apa, apb, bpa, bpb are balanced. This
shows the first inclusion.

In order to show the inclusion from right to left, without loss of generality,
let z = bpbapa where apb ∈ C. Since δ(apa, bpb) = 2 it remains to see that
no other pair of factors of z are unbalanced. Let u, v ∈ Factor(z) be such
that |u| = |v|, there are two cases to consider:

– If |u| = |v| < |p|+ 2, consider the standard factorization of apb = (x, y)C.
By Theorem 7 the word xapbapb is a Christoffel word and by Theorem 4
it is balanced. Also, by Theorem 5 apa and bpb are balanced words. Since
|u| and |v| are smaller then |p|+ 2 then both words u and v are factors of
at least one of the words apa, bpb or apbapb, so δ(u, v) ≤ 1.

– If |u| = |v| ≥ |p| + 2, then without loss of generality, assume that the
factor u occurs before v in w. Let α,A,B,C,D be such that u = Bα,
v = αC and z = ABαCD, as shown in Figure 6.

z
b p b a p a
A u C D

B v
α

Figure 6: In the case where |u| = |v| ≥ |p|+ 2 an overlap α may occur.

In such case, we have δ(u, v) = δ(Bα,αC) = δ(B,C). One easily checks
that either |α| ≥ 1 and |B| = |C| < |p| + 2 implying that δ(u, v) ≤ 1,
either |α| = 0 and the only unbalanced pair of factors in z if u = bpb and
v = apa. This concludes the proof.

�
Finally, this last lemma only consider words of the form z = apabpb

since in the other case, let z = bpbapa with apb ∈ C it suffices to consider
z = apabpb and by Property 8, apb ∈ C.

Lemma 22. Given a non-trivial Christoffel word w = apb = (u, v)C, the
following equality hold: apabpb = u2v2.

13



Proof. First, let us consider the case where one of the words u or v is
a trivial Christoffel word.

– If u = a then v = akb for some k ≥ 0 and u2v2 = apabpb where p = ak.
– If v = b then u = abk for some k ≥ 0 and u2v2 = apabpb where p = bk.

Now, if both u and v are non-trivial, we consider the central words of these
Christoffel words. Let u′, v′ be such that u = au′b and v = av′b. Since all
three words u′, v′, p are palindromes, we have

p = u′10v′ = v′01u′

u u v v
a p b

a u′ b a v′ a b u′ b a v′ b
a p a b p b

Figure 7: The palindromic structure of the centrals words ensures that u2v2 = apabpb.

As illustrated in Figure 7, the equality u2v2 = apabpb hold.

�

6. NCM over general polyominoes

In order to extend NCM to words over the four letter alphabet {0, 1, 0, 1},
it suffices to notice that since a contour word cannot admit any factor of the
set {00, 00, 11, 11}, any factor of a contour word that is written over a three
letter alphabet must admit a sub-factor of the form abka where {a, b} ∈
{{0, 1}, {0, 1}, {0, 1}, {0, 1}}. Since we assumed that the boundary word has
been coded in a clockwise manner, the only non-convex words over more
than two letters that do not admit any other non-convex word as a factor
are of the form:

abka where (a, b) ∈ {(0, 1), (1, 0), (0, 1), (1, 0)} and k ≥ 1.

7. Conclusion

In this paper, we have provided a general form for the generators of the
monoid of non-convex words that is uwkv where w = (u, v)C and k ≥ 1.

14



Moreover, in the basic case, that is k = 1, we showed that those words
are exactly the minimal words, with respect to the factorial order, among
the almost balanced words that are the words admitting exactly one pair of
unbalanced factors. More generally, a word z = uwkv where w = (u, v)C
admits exactly k pairs of unbalanced factors and in particular if k = 0 then
z = w ∈ C and z is a balanced.

Finally, the above characterization of non-convexity highlights an im-
portant difference between Euclidean and discrete geometry. While Tietze’s
theorem (see Tietze (1929)) proves that in Rd convexity is a local property,
the fact that NCM contains arbitrarily long words shows that it is not the
case in discrete geometry. If one looks at a polyomino using only a finite
window, it may always seem convex even if it is not.
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