
Noname manuscript No.
(will be inserted by the editor)

Two plane probe algorithms for the computation of the
normal vector to a digital plane

Jacques-Olivier Lachaud · Xavier Provençal · Tristan Roussillon

Received: date / Accepted: date

Abstract Digital planes are sets of integer points lo-

cated between two parallel planes. We present a new

algorithm that computes the normal vector of a digi-

tal plane given only a predicate “is a point x in the

digital plane or not”. In opposition to classical recogni-

tion algorithm, this algorithm decides on-the-fly which

points to test in order to output at the end the ex-

act surface characteristics of the plane. We present two

variants: the H-algorithm, which is purely local, and

the R-algorithm which probes further along rays com-

ing out from the local neighborhood tested by the H-

algorithm. Both algorithms are shown to output the

correct normal to the digital planes if the starting point

is a lower leaning point. The worst-case time complex-

ity is in O(ω) for the H-algorithm and O(ω logω) for

the R-algorithm, where ω is the arithmetic thickness

of the digital plane. In practice, the H-algorithm often

outputs a reduced basis of the digital plane while the R-

algorithm always returns a reduced basis. Both variants

perform much better than the theoretical bound, with

an average behavior close to O(logω). Finally we show

This work has been partly funded by DigitalSnow ANR-11-
BS02-009 research grant and CoMeDiC ANR-15-CE40-0006
research grant.

J.-O. Lachaud
Université Savoie Mont Blanc, LAMA, UMR5127, F-73376,
France
E-mail: jacques-olivier.lachaud@univ-smb.fr

X. Provençal
Université Savoie Mont Blanc, LAMA, UMR5127, F-73376,
France
E-mail: xavier.provencal@univ-smb.fr

T. Roussillon
Université de Lyon, CNRS
INSA-Lyon, LIRIS, UMR5205, F-69622, France
E-mail: tristan.roussillon@liris.cnrs.fr

how this algorithm can be used to analyze the geome-

try of arbitrary digital surfaces, by computing normals

and identifying convex, concave or saddle parts of the

surface. This paper is an extension of [16].

Keywords digital geometry · digital plane · recogni-

tion · normal vector estimation · lattice reduction

Mathematics Subject Classification (2000) MSC

52C07 Lattices and convex bodies in n dimensions ·
MSC 11P21 Lattice points in specified regions ·
MSC 65D18 Computer graphics, image analysis,

and computational geometry · MSC 68R Discrete

mathematics in relation to computer science

1 Introduction

The study of the linear geometry of digital sets has

raised a considerable amount of work in the digital ge-

ometry community. In 2D, digital straightness has been

extremely fruitful. Indeed, digital straight lines present

many properties, whether geometric, arithmetic, or com-

binatoric (e.g. see survey [13]). Furthermore, these prop-

erties have impacted the practical analysis of 2D shapes,

especially through the notion of maximal segments [6,

22], which are unextensible pieces of digital straight

lines along digital contours. To sum up, they were shown

to be characteristic of convex and concave parts [8,6,

20], to induce several multigrid convergence results [22,

18] and even to be able to identify noisy parts of the

contour [11].

A lot was thus expected from the study of 3D digital

planes (e.g. see the survey [2]). It is true that several

plane recognition algorithms were proposed to deter-

mine if a given set of points could be a piece of digital

plane. Among them, the most fruitful ones adopt a ge-

ometric approach [12,21,9,3]. A first difficulty is the

2 Jacques-Olivier Lachaud et al.

more complex combinatorial structure of digital planes

[15], which appears when studying its connectedness

[10] or the link with multidimensional continued frac-

tions [7,1]. Their multiple definitions become obvious

when looking at the geometry of digital planes: there

are multiple ways of approximating them depending on

the chosen point of view.

These ambiguities make practical 3D digital shape

analysis difficult. The segmentation of the shape bound-

ary into linear parts is thus generally greedy [14,19,5],

for instance by extracting first the biggest plane, and

then repeat the process [23]. In 3D, the main problem

is that there is no more an implication between “be-

ing a maximal plane” and “being a tangent plane” as

it is in 2D. This was highlighted in [4], where maximal

planes were then defined as planar extension of maxi-

mal disks. Contrary to the 2D case, the surface topology

around the point of interest does not give us sufficient

constraints to identify unambiguously the set of points

that should define the tangent plane. To sum up, the

problem is not so much to recognize a piece of plane,

but more to group together the pertinent points onto

the digital shape.

We need thus methods that identify locally signifi-

cant points to test and extract plane parameters at the

same time. From now on, we have as input a starting

point in some plane P and a predicate that answers

to the question “is point x in plane P ?”. The objec-

tive is to find the exact plane parameters solely from

this information, by testing points as locally as possi-

ble. We call plane probe algorithms that class of plane

recognition algorithms.

We proposed a first approach to solve this problem

in [17]. Its principle is to deform an initial unit tetra-

hedron based at the starting point with only unimodu-

lar transformations. Each transformation is decided by

looking mostly at a few points around the tetrahedron.

These points are chosen so that the transformed tetra-

hedron is in P, with the same volume, and is pushed

towards one side of the plane. At the end of this itera-

tive process, one face of the tetrahedron has an extremal

position in the plane and is thus parallel to P.

In [16], we designed a new algorithm for this prob-

lem. It shares some features of the previous one, be-

cause it is also an iterative process that deforms an

initial tetrahedron and stops when one face is parallel

to P. It differs from it on several points, as illustrated

on fig. 1. One vertex of the evolving tetrahedron is the

fixed point lying above the starting point and the oppo-

site triangular facet. The position of the evolving tetra-

hedron is thus better controlled than in [17]. Moreover,

this new algorithm is mostly a geometrical algorithm

using Delaunay circumsphere property, while the for-

mer was mostly arithmetic. Its theoretical complexity

is slightly better in theory, since it drops a log factor,

and in practice also.

•
•

•

•
•

•
•

•

•
•

•

•
• •

•
•

• •
•

•

•

•
•

•

•
• •

•

•
•

•

• •

•

•

•

•
•

•

•
•

•
• •

•

•

•

•

•
•

•

•
•

•

•
•

•

•
•

•
•

•
•

•
•

• •

•

•

•

•

•

•

•

•
•

• •
•

•

•

•

•
•

•
•

•
•

•
•

•

•

•

•

•

•

•

•
•

• •

•

•

•

•

•

•

•
•

•
•

•
•

•

•

•

•

•

•

•

•

•

•

•
•

• •
•

•
•

•

•
•

••
•

•
•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•
•

•
•

•

•

•

•

•

•

•
•

•

•
•

•
•

•

•

•

•

•

•

•
•

•

•

•

•
•

•

•

•

•
•

•

•
◦•

•

•

(a) i = 0

•
•

•

•
•

•
•

•

•
•

•

•
• •

•
•

• •
•

•

•

•
•

•

•
• •

•

•
•

•

• •

•

•

•

•
•

•

•
•

•
• •

•

•

•

•

•
•

•

•
•

•

•
•

•

•
•

•
•

•
•

•
•

• •

•

•

•

•

•

•

•

•
•

• •
•

•

•

•

•
•

•
•

•
•

•
•

•

•

•

•

•

•

•

•
•

• •

•

•

•

•

•

•

•
•

•
•

•
•

•

•

•

•

•

•

•

•

•

•

•
•

• •
•

•
•

•

•
•

••
•

•
•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•
•

•
•

•

•

•

•

•

•

•
•

•

•
•

•
•

•

•

•

•

•

•

•
•

•

•

•

•
•

•

•

•

•
•

•

•
◦•

•

•

(b) i = 1

•
•

•

•
•

•
•

•

•
•

•

•
• •

•
•

• •
•

•

•

•
•

•

•
• •

•

•
•

•

• •

•

•

•

•
•

•

•
•

•
• •

•

•

•

•

•
•

•

•
•

•

•
•

•

•
•

•
•

•
•

•
•

• •

•

•

•

•

•

•

•

•
•

• •
•

•

•

•

•
•

•
•

•
•

•
•

•

•

•

•

•

•

•

•
•

• •

•

•

•

•

•

•

•
•

•
•

•
•

•

•

•

•

•

•

•

•

•

•

•
•

• •
•

•
•

•

•
•

••
•

•
•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•
•

•
•

•

•

•

•

•

•

•
•

•

•
•

•
•

•

•

•

•

•

•

•
•

•

•

•

•
•

•

•

•

•
•

•

•
◦
•

•

•

(c) i = 2

•
•

•

•
•

•
•

•

•
•

•

•
• •

•
•

• •
•

•

•

•
•

•

•
• •

•

•
•

•

• •

•

•

•

•
•

•

•
•

•
• •

•

•

•

•

•
•

•

•
•

•

•
•

•

•
•

•
•

•
•

•
•

• •

•

•

•

•

•

•

•

•
•

• •
•

•

•

•

•
•

•
•

•
•

•
•

•

•

•

•

•

•

•

•
•

• •

•

•

•

•

•

•

•
•

•
•

•
•

•

•

•

•

•

•

•

•

•

•

•
•

• •
•

•
•

•

•
•

••
•

•
•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•
•

•
•

•

•

•

•

•

•

•
•

•

•
•

•
•

•

•

•

•

•

•

•
•

•

•

•

•
•

•

•

•

•
•

•

•
◦

•

•
•

(d) i = 3

(e) i = 0 (f) i = 2

(g) i = 5 (h) i = 7

Fig. 1 Illustration of the running of [16, Algorithm 2] and
the algorithm from [17] on a digital plane of normal vector
(1, 2, 5). Images (a) to (d) show the four iterations of [16,
Algorithm 1] starting from the origin. Each triangle is inter-
sected by the small dashed red segment. In (d), the normal of
the last triangle is (1, 2, 5). Images (e) to (h) show iterations
0 (initial), 2, 5 and 7 (final) of the algorithm from [17]. The
initial tetrahedron (a) is placed at the origin and the final one
(h) has an upper triangle with normal vector (1, 2, 5).

This paper extends in several ways the DGCI paper

[16]:

– The H-algorithm is essentially the same algorithm

as Algorithm 2 of [16]. We give a new variant, called

R-algorithm, for finding the next tetrahedron, which

guarantees that, at the end of the process, the out-

put facet forms a reduced basis of the plane P. For

now, we observe this property but we are not able

to fully prove it.

– The running time of this new variant is similar to

the previous algorithms, and even better for big ω.

Computation of the normal vector to a digital plane 3

– We detail how this algorithm can be used for dig-

ital shape analysis. We show how to detect con-

vex/concave/inflexion zones onto a digital surface.

– For some well-identified starting points, this algo-

rithm stops and outputs only an approximation of

the normal to P. We show how to detect such bad

starting points and how to connect them to their

corresponding facet.

– We give a comprehensive experimental evaluation of

its time complexity and compare it extensively with

the plane probe algorithm of [17].

The paper is organized as follows. First, we give ba-

sic definitions and present the H- and the R-algorithms.

Then we show their correctness and provide worst-case

time complexity. We then conduct an experimental eval-

uation, which shows that the new variant always output

a reduced basis. The last part describes how this algo-

rithm can be used to analyze the linear geometry of

digital surfaces.

2 Two plane probe algorithms

We introduce a few notations before presenting in a

unified manner our new plane probe algorithms: the

H- and the R-algorithms.

2.1 Digital plane and initialization

We wish to extract the parameters of an arbitrary stan-

dard digital plane P, defined as the set

P = {x ∈ Z3 | µ ≤ x ·N < µ+ s ·N},

where N ∈ Z3 is the normal vector whose components

(a, b, c) are relatively prime, µ ∈ Z is the intercept, s is

the shift vector. In the standard case, the shift vector is

equal to (±1,±1,±1), where the sign of the components

are chosen so that the thickness ω := s ·N is equal to

|a| + |b| + |c|. Moreover, we extract a basis of P, that

is a pair of vectors that forms a basis of the 2D lattice

{x ∈ Z3 | x ·N = 0}. A basis of a two dimensional

lattice is reduced if and only if it consists of the two

shortest non-zero lattice vectors.

By translation, we assume w.l.o.g. that µ = 0. More-

over, by symmetry, we assume w.l.o.g. that the com-

ponents of the normal vector are all positive. We also

exclude cases where a component is null since then it

falls back to a 2D algorithm. Thus, a, b, c > 0, which

implies that s = (1, 1, 1).

We may see the space as partitioned into layers of

coplanar points, orthogonal to N. The height x ·N sorts

these layers along direction N. Points of height 0 and

ω−1 are extreme within P, and are called lower leaning

points and upper leaning points respectively.

We propose an algorithm that, given a predicate “is

x ∈ P ?”, computes the normal vector of a piece of

digital plane surrounding a starting point p ∈ P.

The algorithm places an intial sequence of 3 points

T(0) := (v
(0)
k)k ∈{0,1,2} such that

∀k,v(0)
k := p + ek + ek+1,

(for sake of clarity, we write ∀k instead of ∀k ∈ Z/3Z)

and requires that T(0) ⊂ P.

•
p

e0

e1

e2

◦
q

•
v00

•
v01

•
v02

It is easy to check that T(0) ⊂ P

for any p such that 0 ≤ p ·N <

min{a, b, c}, which corresponds to

points lying inside reentrant corners

(see fig. on the right). The algorithm

then iteratively updates this initial

point set by calling the above predicate for well-chosen

points. We explain in the next subsection how the

shifted point q := p+s, which is not in P because s ·N
is the thickness of P, is used to select those points.

2.2 Iteration and termination

At any step i ∈ N, the tangent plane surrounding the

starting point is described by a sequence of 3 points

denoted by T(i).

For any finite point set S, let us denote by conv(S)

its convex hull and aff(S) its affine hull. Thus, conv(T(i))

is a triangle, whose three counterclockwise oriented ver-

tices are denoted by (v
(i)
k)k ∈{0,1,2} (see fig. 2), whereas

aff(T(i)) is the plane passing by these vertices.

In order to update T(i), the algorithm checks whether

the points of some neighborhood around q and above

aff(T(i)) belong to P or not. Before defining two such

neighborhoods, let us introduce the following notation:

∀k, m
(i)
k := q− v

(i)
k . (1)

The following two neighborhoods are some subsets

of a cone of apex q−∑k m
(i)
k and base {m(i)

k }k ∈{0,1,2}
(see fig. 2).

First, let us define the H-neighborhood at step i as

follows:

N (i)
H :=

{
q−m

(i)
σ(0) + m

(i)
σ(1)}σ, a permutation over {0,1,2},

(2)

In other words,N (i)
H :=

{
q±(m

(i)
k −m

(i)
k+1)

}
k ∈{0,1,2}.

This set consists of six points arranged in an hexagon

and that is why it is called H-neighborhood (see red

4 Jacques-Olivier Lachaud et al.

q

v0

m0

v1
m1

v2

m2

Fig. 2 The triangle conv(T(i)) is depicted in grey. The set

N (i)
H , called the hexagon at step i, is depicted with red disks,

whereas the set N (i)
R is depicted with green squares, located

along rays coming out of the hexagon vertices. We can see

that N (i)
H ⊂ N (i)

R . (Iteration number is dropped for sake of
clarity).

disks in fig. 2). We define below the R-neighborhood,

using the notion of ray, with:

R(i)
σ :=

(
q−m

(i)
σ(0) + m

(i)
σ(1) + λm

(i)
σ(2))λ≥0, (3)

N (i)
R :=

{
R(i)
σ }σ, a permutation over {0,1,2}. (4)

Looking at the first definition of H-neighborhood, it is

clear that the R-neighborhood contains it and extends

it along rays that go out of the hexagon, hence the name

R-neighborhood (see green squares in fig. 2). We thus

have N (i)
H ⊂ N (i)

R .

Let N (i) be any neighborhood in {N (i)
H ,N (i)

R }. Our

algorithm selects a point x? of N (i) ∩ P such that the

circumsphere of T(i) ∪ {x?} does not include any point

of N (i) ∩ P in its interior. The upper triangular facet

of the tetrahedron conv(T(i) ∪ {x?}) intersected by the

straight line passing by p and q is the new triangle

conv(T(i+1)).

Let us introduce the edge vectors of conv(T(i)):

∀k, d
(i)
k := v

(i)
k+1 − v

(i)
k = m

(i)
k −m

(i)
k+1. (5)

The normal of aff(T(i)), denoted by N̂(T(i)), is merely

defined by the cross product between two consecutive

edge vectors of conv(T(i)), i.e. N̂(T(i)) = d
(i)
0 × d

(i)
1 .

The algorithm stops at a step n, when N (n) has an

empty intersection with P. The output of the algorithm

is T(n). We will prove in sec. 3.3 that if p is a lower

leaning point, then the points of T(n) are upper leaning

points of P and that the normal N̂(T(n)) of the triangle

conv(T(n)) is aligned with the normal N of P.

2.3 Unified presentation of plane probe algorithms

Algorithm 1 summarizes our two variants for recogniz-

ing on-the-fly a digital plane. The predicate “is x in

P ?” is used to compute the intersection between the

neighborhood and P (see lines 2 and 3). Clearly, Algo-

rithm 1 remains around its starting point by construc-

tion, since every triangle has a non-empty intersection

with the straight line passing by p and q. It also stays

as local as possible with the empty circumsphere prop-

erty.

Algorithm 1: Unified plane probe algorithm: for

any neighborhood definition (H or R), it extracts

a 3-point sequence of upper leaning points

Input: a shift vector s, a point q and an initial
3-point sequence T(0)

1 i← 0 ;

2 while N (i) ∩P 6= ∅ do

3 Compute a point x? ∈ (N (i) ∩P) such that the

circumsphere of T(i) ∪ {x?} does not include any
point x ∈ (N (i) ∩P) in its interior ;

4 Find T(i+1), defined as the vertex sequence of the

upper facet of conv(T(i) ∪ {x?}) intersected at a
single point by the straight line of direction s

passing by q ;
5 i← i+ 1 ;

6 return T(i);

The algorithm variant using the H-neighborhood is

called the H-algorithm, whereas the one using the R-

neighborhood is called the R-algorithm. We show in

the next section that both variants always extract the

exact parameters of plane P in O(ω) iterations in worst

cases. As we will see in the experimental section, the H-

algorithm often extracts the reduced basis of P, while

the R-algorithm always extracts the reduced basis of P

in our experiments. In most cases, it falls back to the

H-algorithm, but sometimes it looks for points further

away along rays that go out of the hexagon.

To end, note that the H-algorithm is slightly dif-

ferent from [16, Algorithm 2] because only one point

of the hexagon is selected at each iteration, instead of

possibly several ones in case of cospherical points in

[16, Algorithm 2]. This choice leads to a simpler char-

Computation of the normal vector to a digital plane 5

acterization (by lemma 1-item 5, two consecutive tri-

angles must share exactly two vertices, instead of one

or two in [16, lemma 1]), while the number of itera-

tions is not changed (O(ω) in both case). The result is

even better, since the H-algorithm more often leads to

a reduced basis of upper leaning points than [16, Algo-

rithm 2] (for all 6578833 vectors with relatively prime

components ranging from (1, 1, 1) to (200, 200, 200), the

H-algorithm returns 480 non reduced basis against 924

with [16, Algorithm 2], see sec. 4).

2.4 Implementation details

In algorithm 1, line 3, at a step i, we have to compute

a point x? ∈ (N (i)∩P) such that the sphere passing by

T(i)∪{x?} does not contain any other point x ∈ (N (i)∩
P) in its interior. We say below that x? is a closest

point to T(i), since the sphere passing by T(i) ∪ {x?}
has minimal radius (over the set of spheres passing by

T(i) ∪ {x}).
Searching for a closest point to T(i) is trivial and in

O(1) for the H-algorithm, because the H-neighborhood

is finite and its intersection with P has at most 6 points.

The algorithm is then similar to finding the minimum

element of a sequence: we take an arbitrary point y ∈
(N (i) ∩ P) as a current closest point and for each re-

maining point x of this set, if the sphere passing by

T(i) ∪ {y} strictly contains x, then x becomes the new

current closest point (see algorithm 2).

Algorithm 2: ClosestPointInSet(T,S)

Input: a 3-point sequence T, a point set S
1 Let y be an arbitrary point of S ;
2 foreach x ∈ S do

3 if the sphere passing by T ∪ {y} strictly contains x
then

4 y← x ;

5 return y ;

Searching for a closest point to T(i) is more tricky

for the R-algorithm, because the R-neighborhood is un-

bounded. Two questions may be raised: how to compute

its intersection with P and how to determine a closest

point without visiting all the points of the intersection?

We omit the iteration exponent (i) below to simplify

the presentation. Algorithm 3 processes each ray of the

R-neighborhood separately, because over one ray, we

can efficiently find a closest one to T in P and add it

to the candidate point set. Then, we compute a closest

point over the candidate point set by algorithm 2 in

O(1) since this set contains at most 6 points (one per

ray).

Algorithm 3: Search for a closest point to a 3-

point sequence T over the R-neighborhood.

Input: a 3-point sequence T and a shifted point q
1 CandidatePointSet← ∅ ;
2 Compute the set of rays
{Rσ}σ, a permutation over {0,1,2} from T and q ;

3 foreach ray Rσ do
4 if the starting point of Rσ is in P then
5 x← ClosestPointInRay(T, Rσ) ;
6 CandidatePointSet← CandidatePointSet∪{x};

7 return ClosestPointInSet(T, CandidatePointSet) ;

Along a ray, we have two different tasks to perform:

find the points that belong to P and over such points,

find a closest one to T.

First, the starting point of a given ray is guaranteed

to be in P (see algorithm 3, line 3). Second, knowing

that q /∈ P and T ⊂ P (see lemma 1-item 1) and by

equations (1) and (3), there always exist some points of

a ray that are not in P. Third, due to the convexity of P,

all the points not in P must follow the points in P on a

given ray (see lemma 7). Locating the furthest point in

P on a ray can be done in two stages. In the first stage,

one advance in the ray direction by doubling the step

at each iteration until a point not in P is found. The

last two points determine a range whose lower bound is

in P, but upper bound is not in P. In the second stage,

a binary search is performed on this range. The overall

time complexity is logarithmic in the number of points

in P on a given ray.

Finding a closest point to T may be done in a similar

way. Indeed, the function that maps a point x on the ray

to the radius of the sphere passing by T∪{x} is convex

and has a global minimum, because the ray does not

intersect aff(T) (see lemma 1-item 3 and corollary 2).

In fig. 3, we provide a two-dimensional illustration

of this function. For each point x on the ray, depicted

with green boxes, the spheres passing by T ∪ {x} are

depicted with blue circles. We can see that in the ray

direction, the function is first decreasing, reaches its

minimum at the middle point before increasing.

Thus, in algorithm 4, we use two predicates in the

exponential march and the binary search to find a clos-

est point to T in P: the predicate “is x in P” because

we are only interested in points in P, and the in-sphere

test: “does the sphere passing by T ∪ {x} contain y?”

in order to find a closest point. This in-sphere test is

made with a determinant computation.

6 Jacques-Olivier Lachaud et al.

v1

v2

Fig. 3 Two-dimensional illustration of the function that
maps a point x on a ray (in green) to the radius of the sphere
passing by T ∪ {x} (blue circles).

Algorithm 4: ClosestPointInRay(T,Rσ,q)

Input: a 3-point sequence T, a ray Rσ, a shifted
point q

1 x← q−mσ(0) + mσ(1) ; // starting point of the

ray Rσ (must be in P)

2 y←mσ(2) ; // direction vector of the ray Rσ
// exponential march

3 κ← 0, λ← 1 ; // lower and upper bound respectively

4 while x + κy ∈ P and the sphere passing by

T ∪ {x + κy} contains x + λy do
5 κ← λ, λ← 2λ ;

6 κ← bκ
2
c ;

// binary search

7 while (λ− κ) > 4 do
// invariant: x + κy ∈ P

8 α = b (3κ+λ)
4
c, β = b (κ+λ)

2
c, γ = b (κ+3λ)

4
c ;

// κ < α < β < γ < λ
9 if x + βy ∈ P and the sphere passing by

T ∪ {x + βy} contains x + γy then
10 κ← β ;

11 else if x + αy /∈ P or the sphere passing by

T ∪ {x + βy} contains x + αy then
12 λ← β ;

13 else

14 κ← α, λ← γ ;

15 return ClosestPointInSet(T, {x + δy}δ∈[κ,λ]) ;

3 Correctness of plane exploration algorithms

We start by giving some properties that are valid for

both algorithms. We denote by n the last iteration.

The proof that the algorithm always terminates is post-

poned to section 3.2, theorem 1.

3.1 Algorithm invariants and characterization of

update operations

Lemma 1 The following properties are true:

1. ∀i ∈ {0, . . . , n}, ∀k, v
(i)
k ∈ P.

2. ∀i ∈ {0, . . . , n}, {m(i)
k }k ∈{0,1,2} are linearly inde-

pendent.

3. ∀i ∈ {0, . . . , n}, q is strictly above aff(T(i)) in di-

rection s.

4. ∀i ∈ {0, . . . , n− 1}, for a point x? ∈ (N (i) ∩P), the

convex hull of T(i) ∪ {x?} has non-zero volume.

5. ∀i ∈ {0, . . . , n− 1}, T(i) and T(i+1) have two ver-

tices in common.

Proof We prove the first item by induction. Others fol-

low. The first property is obviously true for i = 0. Let us

assume now that it is true for i < n. The set (N (i)∩P)

contains at least one point because i < n (when the set

is empty, the algorithm stops and i = n). For a point

x? ∈ (N (i) ∩ P), let us consider the tetrahedron de-

fined as the convex hull of T(i) ∪ {x?}. Since T(i) ⊂ P

by the induction hypothesis, any three-point subsets of

T(i) ∪ {x?} (and therefore T(i+1)) belong to P, which

proves item 1.

We can now prove items 2 and 3. Indeed, let us as-

sume that {m(i)
k }k ∈{0,1,2} are coplanar. Then, by con-

struction (algorithm 1, line 4), q belongs to conv(T(i)).

However, since q /∈ P and T(i) ⊂ P, this contradicts

the convexity of P, which proves item 2 by contradic-

tion.

The same argument of convexity may be used to

prove that q is strictly above aff(T(i)) in direction s for

all i ∈ {0, . . . , n} (item 3).

To end, we prove items 4 and 5. Since q is strictly

above aff(T(i)) and since the neighborhoods are defined

in (2) and (4) by vectors {m(i)
k }k ∈{0,1,2} going from

points of T(i) to q (by (1)), all the points of N (i) are

strictly above aff(T(i)) in direction s. As a consequence,

the convex hull of T(i)∪{x?} has non-zero volume (item

4) and T(i) 6= T(i+1). Since the convex hull of T(i) ∪
{x?} is a non degenerate tetrahedron, there are three

triangular facets different from conv(T(i)). All of them

(including conv(T(i+1))) share exactly two vertices with

T(i) and have point x? as third vertex (item 5). ut

The following lemma fully characterizes the main

operation of algorithm 1 (lines 3-5):

Computation of the normal vector to a digital plane 7

Lemma 2

∀i ∈ {0, . . . , n− 1}, ∃ k? s.t.
v
(i+1)
k? = v

(i)
k? + αm

(i)
k?+1 + βm

(i)
k?+2,

with α, β ∈ N, α = 1 or β = 1, α+ β ≥ 1,

v
(i+1)
k?+1 = v

(i)
k?+1,

v
(i+1)
k?+2 = v

(i)
k?+2

Proof Let us assume w.l.o.g. that k? = 0. By algo-

rithm 1, (2) and (4), for a permutation σ over {0, 1, 2},
∀i ∈ {0, . . . , n− 1}, v

(i+1)
0 = q − m

(i)
σ(0) + αm

(i)
σ(1) +

βm
(i)
σ(2), and by (1), −m

(i+1)
0 = −m

(i)
σ(0) + αm

(i)
σ(1) +

βm
(i)
σ(2).

We will prove below by contradiction that σ(0) = 0.

Let us assume that σ(0) = 1 (the case where σ(0) = 2

is similar).

Let us consider det(−m
(i)
1 ,−m

(i)
2 ,−m

(i+1)
0). Replac-

ing −m
(i+1)
0 by

(
−m

(i)
1 +αm

(i)
0 +βm

(i)
2

)
in the previous

determinant, we obtain the following identity:

det(−m
(i)
1 ,−m

(i)
2 ,−m

(i+1)
0)

= α det(−m
(i)
1 ,−m

(i)
2 ,m

(i)
0).

If α = 0, then det(−m
(i)
1 ,−m

(i)
2 ,−m

(i+1)
0) = 0, which

is in contradiction with lemma 1-item 2.

Otherwise, since α > 0, det(−m
(i)
1 ,−m

(i)
2 ,−m

(i+1)
0)

and det(−m
(i)
1 ,−m

(i)
2 ,−m

(i)
0) must have opposite signs.

By (1), it follows that the plane passing by v
(i)
1 ,q,v

(i)
2

separates v
(i)
0 from v

(i+1)
0 (see fig. 4.a). In this case,

the straight line passing by p and q can intersect both

T(i) and T(i+1) only if it intersects segment [v
(i)
1 v

(i)
2].

However, a ray that goes inside the convex hull of T(i)∪
T(i+1) through edge [v

(i)
1 v

(i)
2] must exit the convex tetra-

hedron through a single point of a facet that is not

T(i+1) (see fig. 4.b), which raises a contradiction (T(i+1)

is not the upper facet intersected by such a ray in this

case).

We conclude that σ(0) 6= 1 and similarly that σ(0) 6=
2, which implies that σ(0) = 0. ut

This characterization leads to extra properties: lem-

ma 3 and corollary 2 are stronger versions of lemma 1,

items 2 and 3, respectively.

Let M(i) be the 3 × 3 matrix formed by the three

vectors joining the vertices of the current triangle to

q. Otherwise said, it consists of the three row vectors

(m
(i)
k)k ∈{0,1,2}. We prove below that M(i) is unimod-

ular, which is an important property to show that the

algorithm returns a basis of upper leaning points at

termination (see theorem 2 and corollary 5).

Lemma 3 ∀i ∈ {0, . . . , n}, det (M(i)) = 1.

vi1

vi2

vi0

qvi+1
0

(a)

vi1

vi2

vi0

vi+1
0

(b)

Fig. 4 Illustration of lemma 2. In (a), the plane passing by

v
(i)
1 ,q,v

(i)
2 separates v

(i)
0 from v

(i+1)
0 . In (b), a ray that

goes inside the tetrahedron through edge [v(i)
1 v

(i)
2] must exit

through a point of a facet that is not T(i+1).

Proof It is easily checked that det (M(0)) = 1. We now

prove that if det (M(i)) = 1 for ∀i ∈ {0, . . . , n− 1},
then det (M(i+1)) = 1. As proven in lemma 1-item 5,

only one vertex changes at each step, for instance v
(i)
k .

If we look at lemma 2, we have v
(i+1)
k = v

(i)
k +αm

(i)
k+1+

βm
(i)
k+2, which is equivalent to m

(i+1)
k = m

(i)
k −αm

(i)
k+1−

βm
(i)
k+2, for some non negative integers α, β such that

α or β equals to 1, α + β ≥ 1. The other vertices are

not modified so the remaining two rows of M(i+1) are

not modified. We get

det(M(i+1))

= det(m
(i)
k − αm

(i)
k+1 − βm

(i)
k+2,m

(i)
k+1,m

(i)
k+2)

= det(m
(i)
k ,m

(i)
k+1,m

(i)
k+2) (by linearity)

= det(M(i)) = 1. (by induction hypothesis)

ut

The height of each vector mk in the direction given

by the estimated normal is equal to 1.

Corollary 1 ∀i = 0, . . . , n, M(i) · N̂(T(i)) = 1.

Proof M(i)·N̂(T(i)) = 1 because ∀k, (d(i)
0 ×d

(i)
1)·m(i)

k =

((m
(i)
0 −m

(i)
1)×(m

(i)
1 −m

(i)
2)) ·m(i)

k = (m
(i)
k+1×m

(i)
k+2) ·

m
(i)
k = det (M(i)), which is equal to 1 by lemma 3. ut

The height of q in the direction given by the esti-

mated normal is equal to 1.

Corollary 2 ∀i = 0, . . . , n, q · N̂(T(i)) = 1.

Proof Since ∀i = 0, . . . , n, q = v
(i)
0 +m

(i)
0 , we compute

on one hand v
(i)
0 · N̂(T(i)), which is equal to 0 by def-

inition, and on the other hand m
(i)
0 · N̂(T(i)), which is

equal to 1 by corollary 1. ut

To end, the following lemma leads to a strong geo-

metrical property : the straight line passing by p and

q intersects the interior of every triangle.

Lemma 4 ∀i ∈ {0, . . . , n}, ∀k, (m
(i)
k ×m

(i)
k+1) · s > 0.

8 Jacques-Olivier Lachaud et al.

Proof By definition, ∀k, (m
(0)
k ×m

(0)
k+1) · s = 1. Let us

now assume that ∀k, (m
(i)
k ×m

(i)
k+1) · s > 0 and let us

prove that ∀k, (m
(i+1)
k ×m

(i+1)
k+1) · s > 0. Let k? be the

index of the vertex of T(i+1), that is not a vertex of

T(i). By lemma 2, we have m
(i+1)
k? = m

(i)
k? −αm

(i)
k?+1−

βm
(i)
k?+2, for some non negative integers α, β such that

α or β equals to 1, α+ β ≥ 1, while m
(i+1)
l = m

(i)
l for

l ∈ {0, 1, 2} \ k?.
We must check two expressions involving m

(i+1)
k?

(the remaining one does not change).

The first one is:

(m
(i+1)
k? ×m

(i+1)
k?+1) · s = (m

(i)
k? ×m

(i)
k?+1) · s

− α(m
(i)
k?+1 ×m

(i)
k?+1) · s− β(m

(i)
k?+2 ×m

(i)
k?+1) · s.

We conclude that (m
(i+1)
k? ×m

(i+1)
k?+1) · s > 0 because

– (m
(i)
k? ×m

(i)
k?+1) · s > 0 by induction hypothesis

– −α(m
(i)
k?+1 ×m

(i)
k?+1) · s = 0

– −β(m
(i)
k?+2×m

(i)
k?+1) · s = β(m

(i)
k?+1×m

(i)
k?+2) · s ≥ 0

by induction hypothesis (and β ≥ 0).

The second expression is similar.

ut

By (1), lemma 4 is equivalent to:

∀i ∈ {0, . . . , n}, ∀k,
(
(q−m

(i)
k)×(q−m

(i)
k+1)

)
·(q−p) > 0,

which means that p is strictly in the first oc-

tant of the frame (q;−m
(i)
0 ,−m

(i)
1 ,−m

(i)
2). This im-

plies that the straight line passing by p and q in-

tersects the interior of the triangle whose vertices are

(q−m
(i)
k)k ∈{0,1,2}, i.e. (v

(i)
k)k ∈{0,1,2}.

This result guarantees that there is no ambiguity

in the computation of T(i+1) in line 4 of algorithm 1,

since the straight line passing by p and q never crosses

an edge of conv(T(i) ∪T(i+1)), but only the interior of

T(i) and T(i+1).

3.2 Termination

In the following proofs, we compare the position of the

points along direction N. For the sake of simplicity, we

use the bar notation · above any vector x to denote

its height relative to N. Otherwise said, x := x · N.

Even if N is not known, q ≥ ω by definition and for

all x ∈ P, 0 ≤ x < ω. By (1) and lemma 1-item 1 we

straightforwardly get the following lemma:

Lemma 5 ∀i ∈ {0, . . . , n− 1}, ∀k, m
(i)
k > 0.

As a consequence, any operation strictly increases

the height of the updated vertex.

Lemma 6 ∀i ∈ {0, . . . , n− 1}, let k? be the index of

the updated vertex such that v
(i+1)
k? 6= v

(i)
k? . Then,

v
(i+1)
k? > v

(i)
k? . A corollary is m

(i+1)
k? < m

(i)
k? .

Proof By lemma 2, we have ∀i ∈ {0, . . . , n− 1},
v
(i+1)
k? = v

(i)
k? + αm

(i)
k?+1 + βm

(i)
k?+2, with two non nega-

tive integers α, β such that α = 1 or β = 1, α+ β ≥ 1.

Since ∀k, m
(i)
k > 0 by lemma 5 and α, β ≥ 0, but α

and β are not both equal to 0, we clearly have v
(i+1)
k? >

v
(i)
k? and, by (1), m

(i)
k? < m

(i+1)
k? . ut

The termination theorem follows:

Theorem 1 The number of steps in algorithm 1 is

bounded from above by ω − 3.

Proof The result comes from the fact that the sequence

(
∑
k m

(i)
k)i=0,...,n is a strictly decreasing sequence of in-

tegers between ω and 3 because:

– ∀k,m(0)
k = ek+2 and

∑
k m

(0)
k = ω.

– by lemma 5,

∀i ∈ {0, . . . , n}, ∀k, m
(i)
k > 0 and

∑
k

m
(i)
k ≥ 3.

– by lemma 6,

∀i ∈ {0, . . . , n− 1},
∑
k

m
(i)
k >

∑
k

m
(i+1)
k .

ut

Remark that this bound is tight since it is reached

when running the algorithm on a plane with normal

N(1, 1, r).

3.3 Correctness

We show that our two plane probe algorithms extract

the correct normal of the input digital plane. Let us

begin with a small technical lemma:

Lemma 7 For any permutation σ over {0, 1, 2},
∀i ∈ {0, . . . , n}, if there is a point x of ray R(i)

σ that

is not in P, then no point further than x on the ray is

in P.

Proof For two non negative integers λ and λ′ such that

λ < λ′, let x := q−m
(i)
σ(0) + m

(i)
σ(1) + λm

(i)
σ(2) and y :=

q−m
(i)
σ(0) + m

(i)
σ(1) + λ′m

(i)
σ(2) be two points of R(i)

σ (see

equation 3). If x /∈ P, then either x < 0 or x ≥ ω.

However, it cannot be the former because x = v
(i)
σ(0) +

m
(i)
σ(1) + λm

(i)
σ(2) and

– v
(i)
σ(0) > 0 by lemma 1-item 1,

– m
(i)
σ(1),m

(i)
σ(2) > 0 by lemma 5,

Computation of the normal vector to a digital plane 9

– λ is assumed to be non negative.

We can now bound from below the height of y = x +

(λ′ − λ)m
(i)
σ(2). Since x ≥ ω, m

(i)
σ(2) > 0 (by lemma 5)

and (λ′ − λ) > 0, we have y ≥ ω, which implies that

y /∈ P. ut
Corollary 3 ∀i ∈ {0, . . . , n}, (N (i)

H ∩P) = ∅ ⇒ (N (i)
R ∩

P) = ∅.
Proof Due to the neighborhood definitions (2) and (4),

∀i ∈ {0, . . . , n}, any point y in N (i)
R but not in N (i)

H is

located in a ray whose starting point x is in N (i)
H and

y = x + λm
(i)
k for some index k ∈ {0, 1, 2} and non

negative integer λ.

If (N (i)
H ∩P) = ∅, then x /∈ P and the result follows

by lemma 7. ut
This corollary implies in particular that at the last

step we can focus on the H-neighborhood. Since we

focus below on the last step n, we omit the exponent

(n) in the proofs to improve their readability.

We now give the correctness result when the starting

point p is a lower leaning point, i.e. p = 0.

Theorem 2 If p is a lower leaning point (i.e. p = 0

and thus q = ω), the vertices of the last triangle are

upper leaning points, i.e. ∀k,v(n)
k = ω − 1.

Proof The first step of the proof is to show that the ver-

tices of the last triangle are all at the same height, i.e.

m0 = m1 = m2. If not, then there exists k ∈ {0, 1, 2}
such that dk 6= 0. In this case, either (i) dk < 0 or (ii)
dk > 0. Since q = ω and |dk| < ω, either (i) q+dk ∈ P

or (ii) q−dk ∈ P. This implies that N ∩P 6= ∅, which

is a contradiction because N ∩ P = ∅ at the last step

(see algorithm 1, l. 2). As a consequence, ∀k,dk = 0

and ∀k,mk = γ, a strictly positive integer.

The second step of the proof is to show that γ = 1.

Let us denote by 1 the vector (1, 1, 1)T . We can write

the last system as MN = γ1. Since M is invertible

(because det (M) = 1 by lemma 3), N = M−1γ1 and

as a consequence γ = 1 (because the components of N

are relatively prime and M−1 is unimodular).

We conclude that ∀k,mk = 1 and, straightforwardly,

vk = ω − 1. ut
The following two corollaries are derived from

lemma 3 and theorem 2.

Corollary 4 If p is a lower leaning point, the normal

of the last triangle is equal to N, i.e. N̂(T(n)) = N.

Proof On one hand, MN̂(T) = 1 because ∀k, (d0×d1)·
mk = ((m0−m1)×(m1−m2)) ·mk = (mk+1×mk+2) ·
mk = det (M), which is equal to 1 by lemma 3.

On the other hand, MN = 1 by theorem 2. Since

M is invertible, we have N̂(T) = N. ut

Corollary 5 If p is a lower leaning point, (d
(n)
0 ,d

(n)
1)

is a basis of the lattice of upper leaning points {x ∈ P |
x = ω − 1}.

Proof The unit parallelepiped in the lattice

{(q + αm0,q + βm1,q + γm2)|(α, β, γ) ∈ Z3}

does not contain any integer point because it is equiv-

alent to Z3 (det (M) = 1 by lemma 3). It follows that

the facet conv(T) does not contain any integer point.

Since the points of T are upper leaning points by theo-

rem 2, (d0,d1) is a basis of the lattice of upper leaning

points. ut

We end the section by providing the worst-case time

complexity of both algorithms in a computation model

where the evaluation of the predicate “is x in P” only

requires a constant time:

Theorem 3 If p is a lower leaning point, the H-

algorithm (resp. R-algorithm) returns three upper lean-

ing points of P in O(ω) (resp. O(ω logω)), where ω is

the arithmetical thickness of the digital plane.

Proof The time complexity and correctness of the H-

algorithm straightforwardly comes from theorem 1 and

theorem 2 respectively, because each iteration runs in

O(1) (N (i)
H ∩ P contains at most 6 points and algo-

rithm 2 runs in linear time, see sec. 2.4).

However, the time complexity and correctness of the

R-algorithm depend also on the time complexity and

correctness of algorithm 4, run at each iteration to find

the closest point in P to the current triangle. Algo-

rithm 4 uses an exponential march (lines 4-5) followed

by a binary search (lines 7-14). The relevance of such

an approach comes from lemma 5 and lemma 7 (along

a ray, points in P are followed by points lying above P)

and corollary 2 (which implies, together with (1) and

(3), that the function that maps a point x in the ray

sequence to the radius of the sphere passing by T∪{x}
is convex and has a global minimum).

Let us focus now on the complexity of algorithm 4.

After line 3, κ = 0 and x + κy ∈ P (precondition, see

algorithm 3, line 3). Therefore, x + κy ≤ ω. Moreover,

we know by lemma 5 and lemma 7, that there must be a

greater value for κ, such that x+κy > ω. It is clear that

this value is reached after at most logω+2 iterations in

the exponential march (lines 4-5). After line 6, the size

of the range [κ, λ] is at most d 3ω2 e. In the binary search

(lines 7-14), there are O(logω) iterations because each

iteration shrinks the range to half its size until a size

less than 4. The last line takes a constant time since

algorithm 2 runs in linear time and the cardinality of

the input point set is at most 4. The overall complexity

of algorithm 4 is thus O(logω).

10 Jacques-Olivier Lachaud et al.

Since there are O(ω) iterations in algorithm 1 (the-

orem 1) and since algorithm 4 is used at each iteration

at most 6 times in algorithm 3, we conclude that the

overall complexity of the R-algorithm is O(ω logω). ut

It is worth noting that in both cases, the time com-

plexity corresponds to the number of calls to the predi-

cate “is x in P ?”. This means that the time taken by a

call to the predicate impacts directly the multiplicative

constant in O(ω) (resp. O(ω logω)).

4 Experimental evaluation

In this section, we conduct an experimental evalua-

tion of both H- and R-algorithms. Furthermore, we also

compare these new algorithms to the plane probe algo-

rithm presented in [17] called FindNormal. We evaluate

the number of steps, the number of calls to the pred-

icate “is x in P ?” as a function of the norm of the

normal vector of P. We also check the ability of the

algorithms to produce reduced lattice basis, and, in the

case where the basis is not reduced, the number of lat-

tice reduction operations necessary to transform it into

a reduced basis.

The graphics on fig. 5 and fig. 6 shows that the three

algorithms have quite a similar behavior. For the three

algorithms, the number of steps is clearly sublinear on

average. That being said, there are still some cases that

reach the linear bound of theorem 1. Unlike the Find-

Normal algorithm, at each step the H- and R-algorithms

select a point based on geometrical criteria. These cri-

teria are stronger in the case of the R-algorithm which

explains that in general, it terminates with less steps

than the others.

Regarding the number of points tested or, equiva-

lently, the number of calls to the predicate “is x in P ?”,

the H-algorithm shows a better behavior on average. Of

course, the systematic exploration of 6 rays using algo-

rithm 2 generates extra calls to the predicates.

Corollary 5 states that the edge vectors of the last

triangle form a basis of the lattice of upper leaning

points to P.

Let us recall that a basis (x,y) is reduced if and only

if ‖x‖, ‖y‖ ≤ ‖x−y‖ ≤ ‖x+y‖. Given (x,y) a basis of a

two dimensional lattice, there is an iterative algorithm

to compute a reduced basis from (x,y). This algorithm

consists in replacing the longest vector among (x,y) by

the shortest one among x+y and x−y, if it is smaller.

This operation is called a reduction.

In [17], a solution is proposed in order to generate

reduced basis. This method can be summarized as if

at one step, a non-reduced basis is formed and that it

may be corrected using a reduction, then do it. In H-

and R-algorithm, we return the two shortest vectors in

{d(n)
k }k ∈{0,1,2} as a basis. We do not perform any re-

duction because such a basis is almost always reduced.

We ran all three algorithms (FindNormal, H-algorithm,

R-algorithm) on all vectors ranging from (1,1,1) to

(200,200,200). There are 6578833 vectors with relatively

prime components in this range. Tab. 1 shows that less

than 0.01% of basis computed by the H-algorithm were

non-reduced. Regarding the R-algorithm, not only all

bases computed in the range (1,1,1) to (200,200,200)

were reduced but we have performed billions of tests

on different normal vectors and we have never found a

basis that was not reduced.

Algorithm FindNormal H-alg. R-alg.
nb. non-reduced 6197115 (94.2%) 480 (0.007%) 0
avg. nb. reductions 6 1 0
max. nb. reductions 117 1 0

Table 1 Algorithms FindNormal, H-algorithm and R-
algorithm were used on all 6578833 vectors ranging from
(1, 1, 1) to (200, 200, 200) with relatively prime coordinates.
The average number of reduction is computed only among
non-reduced basis.

5 Digital surface analysis

In this section, we consider a set of voxels, Z, where

voxels are seen as axis-aligned unit cubes whose vertices

belong to Z3. The digital boundary, BdZ, is defined as

the topological boundary of the union of the voxels of

Z. Since a digital boundary looks locally like a digital

plane, it is natural to run our plane probe algorithms

at each reentrant corner of the digital boundary with

predicate “is x in BdZ ?” in order to estimate a lo-

cal tangential facet to the volume Z (see fig. 7). This

facet also defines naturally a local normal vector to the

volume Z.

Since the predicate “is x in BdZ ?” defines only

locally a plane, our plane probe algorithms must be

slightly adapted to this new context. We discuss first

the case where Z is the digitization of a convex set,

and we address the problem of initializing the algo-

rithms at bad reentrant corners, that is a corner that

does not correspond to a lower leaning point. Then we

present how we can use the H-neighborhood to detect

planarity defects. Last we explain how to make facets

follow closely the local planar geometry along the dig-

ital surface. Presented experiments use H-algorithm,

but would be identical with R-algorithm.

From now on, we call pattern any tuple

(q, s,m0,m1,m2), such that q and s define a

Computation of the normal vector to a digital plane 11

Fig. 5 Number of iterative steps performed by the plane probe algorithms as a function of the 1-norm of the normal vector N.
Top: the algorithm is FindNormal from [17], middle: H-algorithm and bottom: R-algorithm. All graphics are made using the
same vectors picked randomly in such way that their 1-norm is located in the interval displayed by the width of each column.

12 Jacques-Olivier Lachaud et al.

Fig. 6 Number of calls to the predicates “is x ∈ P” versus the 1-norm of the normal vector N. Top: the algorithm is FindNormal

from [17], middle: H-algorithm and bottom: R-algorithm. All graphics are made using the same vectors picked randomly in
such a way that their 1-norm is located in the interval displayed by the width of each column.

Computation of the normal vector to a digital plane 13

Fig. 7 Our H-algorithm has been run at each reentrant corner of a digital plane (left) and an ellipse (right). The last triangle
of each run is printed and each triangle is associated one-one to a pattern. On the left, the large triangles that regularly tile
the digital plane are Bezout patterns; the small triangles hidden underneath are reduced patterns.

reentrant corner of BdZ and q −m0,q −m1,q −m2

is the output facet of the H-algorithm run at this

reentrant corner. In proofs, since vector s will be

(1, 1, 1) for all considered patterns, we will omit vector

s in the tuples.

5.1 Pattern on convex shapes

Let us assume that Z is a digitally convex shape, i.e.

the digitization of its convex hull is Z itself. Let F be

a facet of the convex hull Conv(BdZ) of BdZ, oriented

so that its normal points outside. The shift vector sF
of F is the vector (±1,±1,±1) whose component signs

match the sign of the normal vector to F . We define

the set of boundary points of BdZ below F as

BdZ(F) :=
{
x ∈ BdZ ∩ Z3 s.t. [x,x + sF [∩ F 6= ∅

}
.

By convexity, for any point y ∈ BdZ(F), the point

y + sF does not belong to BdZ.

It is clear that BdZ(F) is a piece of some digital

plane P: it suffices to define P as the digital plane with

normal vector identical to the normal vector of F and

with intercept such that the vertices of F are all upper

leaning points.

If a pattern (q, s,m0,m1,m2) rooted at point q −
s ∈ BdZ(F) and with s = sF has its triangle aligned

with F , then q−s is a lower leaning point of the digital

plane carrying BdZ(F). In this case, q is called a Be-

zout point and (q, s,m0,m1,m2) is called a Bezout pat-

tern of F . Unfortunately not every facet of Conv(BdZ)

has a Bezout pattern. This is illustrated on fig. 7. We

can see that approximately half of the facets of the con-

vex hull of BdZ are extracted. The other half of the

facets are not extracted because these facets have no

Bezout point above them ! Their Bezout point is above

the other half of the fundamental domain.

An interesting consequence is that we can use the

first plane probe algorithm of [17] to extract the com-

plementary facets. This is illustrated on fig. 8. Almost

all the geometry of the convex shape is captured. Miss-

ing parts are related to facets with normal vectors with

a null component.

5.2 Reduced patterns

If the pattern with corner point p − s ∈ BdZ(F) is

not aligned with the facet F then it is called a reduced

pattern of F . In this case the pattern is only approxi-

mately aligned with the plane. You can see some exam-

ples of reduced patterns on the digital plane of fig. 7,

left. There are indeed several reentrant corners on such

planes that are not located beneath a Bezout point.

Starting from such corners makeH-algorithm stops pre-

maturely and outputs a smaller triangle that is only

approximately aligned with the local tangent plane.

We propose to detect a posteriori the reduced pat-

terns with algorithm 5.

Its principle is simple. Let us define

Plane(q,m0,m1,m2) as the digital plane of up-

per leaning points m0,m1,m2 and Bezout point q.

Since there are Bezout patterns among all the input

patterns, their vectors mk climb along the normal

to the facet one layer at a time (their height is 1).

Reduced patterns correspond to starting shifted point

q′ that are not Bezout point. Their height (along the

normal to some facet) is thus greater than the height

of Bezout points, i.e. ω. So, in the first iterations, the

algorithm finds the reduced patterns whose shifted

point q′ has height ω + 1. Those shifted points are

put back in the queue, but with the Bezout vectors

that climb one by one. So, in the following iterations,

the reduced patterns whose shifted point q′ has height

14 Jacques-Olivier Lachaud et al.

Fig. 8 Left: a digital surface. Middle: triangular faces (in green) produced by the H-algorithm starting from each reentrant
corners. Right: triangular faces (in blue) produced by the FindNormal algorithm are showed together with the previous ones.

Algorithm 5: Compute reduced patterns from

the list of all patterns.

Input: L: the list of tuples (q, s,m0,m1,m2), one for
each output triangle, where q is the shifted
point, s the shift and q−mk are the three
output vertices.

Var : Q: a queue.
Output: M : the set of reduced patterns.

1 begin
2 M ← ∅;
3 Put all (q, s,m0,m1,m2) of L in queue Q;
4 while not Q.empty() do
5 (q, s,m0,m1,m2)← Q.pop() ;
6 foreach k ∈ {0, 1, 2} do
88 if ∃ a tuple (q′, s′,m′

0,m
′
1,m

′
2) ∈ L such

that s = s′ and q + mk = q′ then
1010 if q′ − s′,q′ −m′

0,q
′ −m′

1,q
′ −m′

2 ∈
Plane(q,m0,m1,m2) then

// Mark q′ as a reduced pattern

11 M ←M ∪ q′ ;
// Push back q′ but with updated

vectors. If it is already

inside, update vectors only.

12 Q.push((q′, s′,m0,m1,m2));

13 return M ;

ω + 2 are reached, and so on. This is illustrated on

fig. 9.

We also remark that reduced patterns can be reached

sooner (e.g. a shifted point of height ω + 3 can be

reached from a shifted point of height ω + 1 with a

vector mk climbing two by two). This is fine, we just

want to mark reduced patterns. On a digital surface,

it may also happen that one pattern can be reached

from another pattern, but they do not correspond to

the same digital plane. This is also tested in the algo-

rithm: in order to be marked, the reduced pattern must

be included in the digital plane carried by the Bezout

pattern (line 10).

4

3

8

2

7

3

2

7

1

6

11

0

5

10

2

1

6

0

5

10

4

9

3

8

0

5

4

9

3

8

2

7

1

6

11

3

8

2

7

1

6

11

0

5

10

4

9

11

Fig. 9 Locating reduced patterns with algorithm 5. A Bezout
pattern of this digital plane is displayed in dark green, its
shifted point q is in green. The plane probe algorithm was
also run at the reentrant corner of height 1, its output is the
reduced pattern displayed in dark red, with shifted point q′

in red. It is easily seen that q′ = q + m2 and is thus located
by algorithm 5.

We now prove that algorithm 5 terminates on arbi-

trary BdZ. To make the explanation simpler, we sup-

pose that the shift vector is equal to 1 := (1, 1, 1) for

each pattern (see also line 8 of the algorithm, where

equality of shift vectors is tested). The two following

lemmas show how to build an order on patterns.

Lemma 8 Given a pattern P = (q,m0,m1,m2), de-

noting by M the matrix composed of rows of mk, then

the digital plane Plane(P) has the following parameters

(resp. normal N, intercept µ and thickness ω):

N = M−11, µ = q ·N− 1 ·N, ω = 1 ·N.

To lighten the exposition, we will speak of the nor-

mal, intercept and thickness of the pattern P, to re-

fer to these characteristics defined on the digital plane

Computation of the normal vector to a digital plane 15

Plane(P). We say that a pattern P ′ = (q′,m′0,m
′
1,m

′
2)

is included in the pattern P = (q,m0,m1,m2), and

we write P ′ ⊂ P, whenever every q′ − 1,q′ −m′0,q
′ −

m′1,q
′−m′2 belongs to Plane(q,m0,m1,m2). We have:

Lemma 9 If P ′ ⊂ P then it holds that N′ ≤ N, where

≤ means less or equal for all components. A corollary

is that ω′ ≤ ω.

Proof Since we have (q′−1) ∈ Plane(P), we have (q′−
1) ·N ≥ µ and it follows from lemma 8 that q′ ·N ≥
q · N. Since we have (q′ −m′k) ∈ Plane(P), we have

(q′ − m′k) · N ≤ µ + ω − 1. Using lemma 8, this is

equivalent to m′k ·N ≥ 1+q′ ·N−q·N. The first relation

entails that M′N ≥ 1 when writing it in matrix form.

Since it holds that M′N′ = 1 and M′ is invertible, the

result follows.

Proposition 1 Algorithm 5 terminates in less than nω̂

iterations, where n is the number of patterns in L and

ω̂ is the maximal thickness of the patterns in L.

Proof First this algorithm manages patterns in the

queue. Then it is clear that the number of patterns can-

not increase, since patterns inserted back into the queue

are associated to existing shifted points of L. Since only

patterns with the same shift vectors are compared, we

limit our reasoning to patterns with the same shift vec-

tor, here the positive orthant s = (1, 1, 1).

The key argument is that whenever some pattern is

pushed back into the queue, its thickness strictly grows

as well as its intercept. At some point, there won’t be

any pattern that can include another one, so the algo-

rithm stops. More precisely, looking at lines 8 and 10,

we denote by P = (q,m0,m1,m2) the pattern in the

list L and by P ′ = (q′,m′0,m
′
1,m

′
2) the pattern popped

from the queue. The pattern that is pushed back into

the queue is denoted by P ′′. Using the above notations

for thickness and intercept of digital planes associated

to patterns (Lemma 8), we obtain straightforwardly

that:

N′′ = N, ω′′ = ω, µ′′ = µ+ 1.

Furthermore, since a success of the test at line 10 means

P ′ ⊂ P, we have ω′ < ω = ω′′ (the “≤” comes from

Lemma 9, the strictness “<” comes from q′ = q+mk).

We may also state that P ′′ 6⊂ P and P 6⊂ P ′′ since their

intercepts are different while their thickness are equal.

To sum up, the queue contains patterns with strictly

increasing thicknesses. However, since the new inserted

pattern P ′′ has the same thickness as some already ex-

isting pattern, it is clear also that the thickness of all

patterns is upperbounded by the thickness of the thick-

est pattern of L, i.e. ω̂. If we follow one pattern of L,

it may thus be reassigned in Q at most ω̂ − 1 times

before having maximal thickness. At this moment, it

cannot be included in any pattern of L, since the tests

at lines 8 and 10 may be true only if the thickness of

P ′ is strictly lower than the thickness of a pattern of L.

So this pattern is definitively popped out of the queue.

It follows than the algorithm terminates in at most nω̂

iterations. ut

In practice, as shown on tab. 2, this algorithm runs

extremely fast and much fewer iterations than nω̂ are

needed. As expected, the algorithm is slower when ana-

lyzing shapes made of wide planar sides with important

arithmetic thickness (e.g. fandisk 5123).

5.3 Detecting planarity defects

If the shape is not convex, the algorithm can be adapted

to detect planarity defects. The idea is that, at a step i,

N (i)
H ∩BdZ must contain at most three elements if it is

locally a piece of plane. Moreover these elements must

always be consecutive neighbors around q in N (i)
H . We

thus stop the algorithm whenever at least one of the two

previous conditions fails, meaning that the surface is lo-

cally non convex. We sum up the possible cases in the

following table, where the predicate values of the points

of the H-neighborhood are symbolized with white cir-

cles for 6∈ BdZ and black circles for ∈ BdZ. When our

plane probe algorithm stops, it returns in addition to

the output triangle the stopping criterion among “con-

vex or planar” and “non convex”. These various stop-

ping criteria are illustrated in fig. 10. Convex and planar

zones contain green triangles, which are patterns which

stops on a “convex and planar” H-neighborhood. In-

flexion zones, saddle points, or places with at least one

negative principal curvature contain mostly magenta

triangles, meaning “non-convex” H-neighborhood, or

yellow triangles, which refer to non-separating patterns.

H-neighborhood configurations Stop Local planarity

yes convex or planar

no (still probing)

yes non-convex

5.4 Following closely digital surface geometry

Our algorithm probes for points in a plane in a sparse

way. This works well when identifying a true digital

16 Jacques-Olivier Lachaud et al.

Fig. 10 Illustration of H-algorithm run on every reentrant corner of digital surfaces “cube and sphere 1283” (top row) and
“fandisk 1283” (bottom row). Extracted triangles are colored according to the stopping criterion: “convex or planar” is green,
“non-convex” is magenta, “non-separating” is yellow. All patterns are displayed on left column. On right column, reduced
patterns have been removed with algorithm 5.

Computation of the normal vector to a digital plane 17

plane, but it may badly identify pieces of plane on digi-

tal surfaces. For instance the algorithm may jump over

holes or cracks in the surface. Therefore, we have to

check at each iteration that the current triangle fits

closely the digital surface. We proceed as follows:

– the current triangle is denoted by T = (v0,v1,v2),

the shifted point q and the shift vector s;

– the corresponding digital plane is D := Plane(q,q−
v0,q− v1,q− v2);

– we compute the digital triangle under T on D as

A := {x ∈ D, [x,x + s[∩ conv(T) 6= ∅},

by a breadth-first traversal from q on D;

– we compute also the three digital segments Bk, k ∈
{0, 1, 2}, along the border of T as the 6-connected

path in D from vk to vk+1 whose points are closest

to the straight line segment [vk,vk+1];

– then the current triangle is said separating iff A ∪
B0 ∪B1 ∪B2 ⊂ BdZ.

When running our plane probe algorithm, we check

at each step if the current triangle is separating. If

not, the algorithm exits with stopping criterion “non-

separating”. An illustration of such cases is given in

fig. 10.

The sets Bk are important to connect points of A.

Should we not consider them, the current triangle might

have a needle shape that is separating while being far

away from the surface (A is reduced to the three vertices

of T).

Some timings and statistics of our algorithms to an-

alyze digital surface geometry are given in tab. 2.

Shape Z #BdZ
Time (ms)

H-algorithm
Time (ms)

reduced
#patterns #reduced

cube and
sphere 1283 34034 1513 30 7041 3266

fandisk 1283 48220 2732 69 12106 6984
fandisk 2563 186760 13954 791 45999 31948
fandisk 5123 734658 71660 18201 178751 142293
octaflower

5123 692738 47299 944 179905 98816

Table 2 Total timings of H-algorithm (algorithm 1) runned
at each point of BdZ for several shapes. Note that this time
includes the time for checking the separation of triangles.
The time taken by algorithm 5 to remove reduced patterns is
listed. The total number of extracted patterns and the num-
ber of patterns marked as reduced are listed.

6 Conclusion and perspectives

In this paper, we proposed two new algorithms that

compute the parameters of a digital plane. In opposi-

tion to usual plane recognition algorithms, these algo-

rithm greedily decide on-the-fly which points have to

be considered like in [17]. We have called plane probe

algorithms that kind of plane recognition algorithms.

Compared to [17], these algorithms are however sim-

pler because they consist in iterating one geometrical

operation. Furthermore the returned solution, which is

described by a triangle parallel to the sought plane,

always lies above the starting corner. Besides, the two

shortest edge vectors of the triangle almost always form

a reduced basis for the purely local H-algorithm. For

the sometimes less local R-algorithm, it has always re-

turned a reduced basis.

For the future, we would like to prove that the R-

algorithm always returns a reduced basis. Moreover, we

would like to find a variant of our algorithm in order

to retrieve complement triangles whose Bezout point is

not above the triangle. For sake of completeness, we are

also interested in degenerate cases, where at least one

component is null. We would also like to recognize a

piece of digital planes, i.e. to extract the digital plane

with minimal characteristics containing this piece, but

with theoretical guarantees. The difficulty is that our

plane probe algorithms need few but specific points of

the plane to fully recognize it. We feel that we still need

a correct definition of what is a valid piece of digital

plane in 3D. Although connectedness was a sufficient

condition for digital segment in 2D, it is not enough in

the 3D case and we are currently working on it.

After having achieved these goals, we would have

a complete working tool for the analysis of digitally

convex surfaces. General digital surfaces are even more

complex to analyze. We have shown that our plane

probe algorithms are able to detect non-convex parts.

To go further, it appears necessary to precisely asso-

ciate to a given output triangle a subset of points of

the digital surface. Then we will be able to analyze

how these subsets of points overlap each other in or-

der to delineate convex, concave and saddle zones. The

segmentation of a digital surface into such zones is cer-

tainly an essential step in digital shape analysis, which

would greatly facilitate higher-level processing, like dig-

ital shape matching, indexing or recognition.

References

1. Berthé, V., Fernique, T.: Brun expansions of stepped sur-
faces. Discrete Mathematics 311(7), 521–543 (2011)

2. Brimkov, V., Coeurjolly, D., Klette, R.: Digital planarity
– a review. Discrete Applied Mathematics 155(4), 468–
495 (2007)

3. Charrier, E., Buzer, L.: An efficient and quasi lin-
ear worst-case time algorithm for digital plane recog-
nition. In: Discrete Geometry for Computer Imagery
(DGCI’2008), LNCS, vol. 4992, pp. 346–357. Springer
(2008)

18 Jacques-Olivier Lachaud et al.

4. Charrier, E., Lachaud, J.O.: Maximal planes and multi-
scale tangential cover of 3d digital objects. In: Proc. Int.
Workshop Combinatorial Image Analysis (IWCIA’2011),
Lecture Notes in Computer Science, vol. 6636, pp. 132–143.
Springer Berlin / Heidelberg (2011)

5. Chica, A., Williams, J., Andújar, C., Brunet, P., Navazo,
I., Rossignac, J., Vinacua, A.: Pressing: Smooth isosur-
faces with flats from binary grids. Comput. Graph. Fo-
rum 27(1), 36–46 (2008).

6. Doerksen-Reiter, H., Debled-Rennesson, I.: Convex and
concave parts of digital curves. In: R. Klette, R. Koz-
era, L. Noakes, J. Weickert (eds.) Geometric Properties
for Incomplete Data, Computational Imaging and Vision,
vol. 31, pp. 145–160. Springer (2006)

7. Fernique, T.: Generation and recognition of digital planes
using multi-dimensional continued fractions. Pattern
Recognition 42(10), 2229–2238 (2009)

8. Feschet, F.: Canonical representations of discrete curves.
Pattern Analysis & Applications 8(1), 84–94 (2005)

9. Gérard, Y., Debled-Rennesson, I., Zimmermann, P.: An
elementary digital plane recognition algorithm. Discrete
Applied Mathematics 151(1), 169–183 (2005)

10. Jamet, D., Toutant, J.L.: Minimal arithmetic thickness
connecting discrete planes. Discrete Appl. Math. 157(3),
500–509 (2009).

11. Kerautret, B., Lachaud, J.O.: Meaningful scales detec-
tion along digital contours for unsupervised local noise
estimation. IEEE Transaction on Pattern Analysis and
Machine Intelligence 43, 2379–2392 (2012).

12. Kim, C.E., Stojmenović, I.: On the recognition of digital
planes in three-dimensional space. Pattern Recognition
Letters 12(11), 665–669 (1991)

13. Klette, R., Rosenfeld, A.: Digital straightness – a review.
Discrete Applied Mathematics 139(1-3), 197–230 (2004)

14. Klette, R., Sun, H.J.: Digital planar segment based poly-
hedrization for surface area estimation. In: Proc. Visual
form 2001, LNCS, vol. 2059, pp. 356–366. Springer (2001)

15. Labbé, S., Reutenauer, C.: A d-dimensional extension of
christoffel words. Discrete and Computational Geometry
p. 26 p. (to appear). ArXiv:1404.4021

16. Lachaud, J.O., Provençal, X., Roussillon, T.: Compu-
tation of the normal vector to a digital plane by sam-
pling significant points. In: N. Normand, J. Guédon,
F. Autrusseau (eds.) Proc. 19th IAPR Int. Conf. Discrete
Geometry for Computer Imagery (DGCI’2016), Nantes,
France, April 18-20, 2016., pp. 194–205. Springer Inter-
national Publishing, Cham (2016).

17. Lachaud, J.O., Provençal, X., Roussillon, T.: An output-
sensitive algorithm to compute the normal vector of a
digital plane. Theoretical Computer Science 624, 73–88
(2016)

18. Lachaud, J.O., Vialard, A., de Vieilleville, F.: Fast, ac-
curate and convergent tangent estimation on digital con-
tours. Image and Vision Computing 25(10), 1572–1587
(2007)

19. Provot, L., Debled-Rennesson, I.: 3D noisy discrete ob-
jects: Segmentation and application to smoothing. Pat-
tern Recognition 42(8), 1626–1636 (2009)

20. Roussillon, T., Sivignon, I.: Faithful polygonal represen-
tation of the convex and concave parts of a digital curve.
Pattern Recognition 44(10-11), 2693–2700 (2011).

21. Veelaert, P.: Digital planarity of rectangular surface seg-
ments. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence 16(6), 647–652 (1994)

22. de Vieilleville, F., Lachaud, J.O., Feschet, F.: Maximal
digital straight segments and convergence of discrete ge-
ometric estimators. Journal of Mathematical Image and
Vision 27(2), 471–502 (2007)

23. Zrour, R., Kenmochi, Y., Talbot, H., Buzer, L., Hamam,
Y., Shimizu, I., Sugimoto, A.: Optimal consensus set for
digital line and plane fitting. International Journal of
Imaging Systems and Technology 21(1), 45–57 (2011).

