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Abstract. This paper presents a formal framework for representing all
reversible polygonalizations of a digital contour (i.e. the boundary of a
digital object). Within these polygonal approximations, a set of local op-
erations is defined with given properties, e.g., decreasing the total length
of the polygon or diminishing the number of quadrant changes. We show
that, whatever the starting reversible polygonal approximation, iterat-
ing these operations leads to a specific polygon: the Minimum Length
Polygon. This object is thus the natural representative for the whole
class of reversible polygonal approximations of a digital contour. Since
all presented operations are local, we obtain the first dynamic algorithm
for computing the MLP. This gives us a sublinear time algorithm for
computing the MLP of a contour, when the MLP of a slightly different
contour is known.

1 Introduction

It is often interesting to construct a polygonal approximation of digital contours
(i.e. the boundary of a digital object) in order to study their geometry. We are
interested in reversible polygonalizations, which have the property that they are
digitized exactly as the input digital contour. Classically, a reversible polygon can
be obtained by greedy decomposition of the input contour into longest digital
straight segments [22, 11]. This decomposition depends on the starting point,
but has at most one more edge than the reversible polygon with the minimal
number of edges. A reversible polygonal approximation which minimizes the
integral summed squared error can also be sought [6]. Another classical reversible
polygon is the Minimum Length Polygon (MLP) [13, 17, 7]. It is a good digital
tangent and length estimator [10, 3] and is proven to be multigrid convergent in
O(h) for digitization of convex shapes, where h is the grid step (reported in [9,
18, 19]). Several linear-time algorithms exist to compute it [14, 15].

The contributions of this paper are twofold. First, we introduce a kind of
algebra within all reversible polygonal descriptions of a given digital contour.
Each digital contour thus induces a class of reversible polygons which have all
the same digitization. A set of valid operations is then defined to pass from one
polygon to another within the same class. We show that the subset of operations
we provide is necessary and sufficient to go from any element of a class to the
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MLP of the same class. In a sense, the MLP acts as a natural representative
of all the reversible polygonal approximations. Secondly, this approach leads us
to a dynamic algorithm for computing the MLP. Since all operations are local
with controlled complexity, given the MLP of a given contour C of size n, after
a local perturbation on this contour, that is to add or remove one pixel to the
region bounded by C, the MLP of this new region can be computed in O(log n).

Furthermore, a dynamic algorithm for computing the MLP is interesting in
several applications. It has been shown that the MLP is a very good regular-
izer for digital deformable models [5]. Unfortunately, existing algorithms are not
dynamic, and the MLP is thus recomputed at each iteration for each possible el-
ementary deformations. A dynamic MLP thus induces a dramatic improvement
in the computation speed of digital deformable models. Another application is
the computation of multiscale digital representations of a digital object [16]. The
MLP of each multiscale contour could thus be computed directly from the de-
composition into digital straight segments computed by their analytic approach.

2 Preliminaries

We call digital contour C a simple 1-curve in Z2 (in the terminology of [9], §7.3.2,
p. 243), such that its cell representation has two boundaries that are Jordan
curves. The inner curve (resp. outer curve) is called the inner polygonal curve of
C (resp. the outer polygonal curve of C). The inner polygon IP(C) is the inner
polygonal curve with its inside in R2. Similarly the outer polygon OP(C) is the
outer polygonal curve with its inside in R2. See Fig. 1 for an illustration. Remark
that C, IP(C) and OP(C) are all polyominoes such that IP(C) and OP(C) have
vertices in Z2 while the interpixel path of C has vertices in Z2 + (1/2, 1/2)).

One can use for instance a Freeman chain to code a digital contour as a word

over the alphabet (0, 1, 2, 3), the associated displacements written as:
−→
0 = (1, 0),

−→
1 = (0, 1) ,

−→
2 = (−1, 0) and

−→
3 = (0,−1). These words are usually called

contour words and the contour word of a digital contour C is denoted by F (C).
In order to simplify the presentation, we will assume that digital contour are
always encoded in a clockwise manner.

Clearly, any curve among the digital contour, the inner polygonal curve and
the outer polygonal curve, completely defines the others. For instance starting
with the digital contour C, the Freeman chain code of the inner polygonal curve
is obtained by removing one step in each turn abkc of F (C) with k ≥ 1 and
(a, b, c) ∈ {(0, 3, 2), (1, 0, 3), (2, 1, 0), (3, 2, 1)} by abk−1c and adding one step in
each turn abkc with k ≥ 1 and (a, b, c) ∈ {(0, 1, 2), (1, 2, 3), (2, 3, 0), (3, 0, 1)}
by abk+1c. Similarly, the Freeman chain code of the outer polygonal curve is
obtained from F (C) in the same way by adding one step in former case and
removing one in the latter one.

2.1 Minimum length polygon

Following the works of Sloboda, Zat́ko and Stoer [18, 21, 20] (or see [8, 9]), we
define the minimum length polygon (MLP) of C as the shortest Jordan curve
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Fig. 1. A digital contour C with its inner polygon IP(C), its outer polygon OP(C) and
its MLP which is, in a clockwise manner, up to circular permutation, the grid-curve

[(1, 0)3, σ+, (3, 2), (1, 0), σ+, (̃1, 1), (̃1, 1), (1, 0), σ+, (̃1, 1), (1, 0), σ+, (̃2, 1), (1, 0), σ+,
(1, 1), (1, 0)2, σ+, (1, 2), (3, 1)].

which stays inside the 1-pixel width band drawn by the cell representation of C.
More precisely, letting A be the family of simply connected compact sets of R2,
we define:

Definition 1. The minimum perimeter polygon of two polygons V,U with V ⊂
U◦ ⊂ R2 is a subset P of R2 such that

P = argminA∈A, V⊆A, ∂A⊂U\V ◦Per(A), (1)

where Per(A) stands for the perimeter of A, more precisely the 1-dimensional
Hausdorff measure of the boundary of A.

Definition 2. The minimum length polygon (MLP) of a digital contour C is
the minimum perimeter polygon of IP(C),OP(C).

Other equivalent definitions for MLP may be found in [14, 15]: they are based
either on arithmetic or word combinatorics. In [18], it is shown that Equation
(1) has a unique solution.

3 Algebra on reversible polygonal representations

We wish to classify polygons with integer vertices according to the digital con-
tour that they represent. Indeed, many different polygons may represent the
same contour. More precisely, a reversible polygonal representation (RPR) of C
is a polygon whose edges stays in OP(C) \ IP(C)◦, whose vertices are integer
vertices of either OP(C) or IP(C) and with an extra bit of information per vertex
specifying if it touches the inside or the outside of the band. It is clear that the



4 J.-O. Lachaud and X. Provençal

digital contour can be reconstructed from such object by computing the set of
intersected pixels. If an edge intersects the interior of a pixel, then it is part of
C while if the edges intersect only the border of a pixel, to the abovementioned
extra bit of information allows to determine if this pixel is part of C or not.

We wish now to find a natural representative for all the RPR of a given
contour C. Our approach is to look for the shortest one. Since the MLP of C
is one RPR of C, our unique representative will be the MLP. We thus provide
a notation for RPR and a set of operations within RPR. These operations are
designed so that they shorten the RPR and they act locally. Furthermore, we
show that they preserve the digital contour.

3.1 Grid-vector, grid-curve

Definition 3. A grid-vector is a triplet x = ((p, q), k, δx) ∈ N2 × N × B where
gcd(p, q) = 1, q/p is the slope of x (with the convention that ∞ = 1/0), k ≥ 1 is
its number of repetitions and the boolean δx is true when one endpoint of x lies
on the inner polygonal curve and the other endpoint lies on the outer polygonal
curve.

Such grid-vector x = ((p, q), k, δx) is noted (p, q)k if δx is F and (̃p, q)k if δx is
T, the ∼ meaning that a side change has occurred. A grid-vector has no specific
orientation since its slope is in [0,∞[. Any grid-vector with slope 0 or∞ is called
trivial. The translation associated to a grid-vector is always given relatively to a

pair of letter (a, b) from the alphabet {0, 1, 2, 3} and is denote using
(a,b)−→. These

letters represents the current orientation context, i.e. the oriented quadrant. The
symbol ∼ specifies a side change and thus inverts the current orientation context.
Therefore, after this edge, the context is changed (see Fig. 2). Translations for
arbitrary grid vectors are given by the formulae:

(a,b)−−−−→
(p, q)k = k(p−→a + q

−→
b ), and

(a,b)−−−−→
(̃p, q)k = k(p

−→
b + q−→a ).

The reversed point of view induced by the symbol ∼ explains the different for-
mulae for translation.

Of course, such translation looses any geometrical interpretation when the
pair of letters (a, b) represent elementary steps in the opposite direction as in
the case of (0, 2) or (1, 3). This situation should never happen.

In order to completely describe a circular band, grid-vectors alone are not
enough. We need extra information regarding quadrant changes. That is why we
introduce the σ operators that act solely on the current orientation context (i.e.,
on the pairs of letters):

σ−(a, b) = (b, a): this operator is a turn toward the exterior,
σ+(a, b) = (b, a): this operator is a turn toward the interior,
with the convention 0 = 2, 1 = 3, 2 = 0, 3 = 1.
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In order to unify the notations, we associate the nil vector to any operator

so that
−→
σ+ =

−→
σ− =

−−−→
(0, 0). Similarly, it is convenient to see each grid-vector as

an operator on a pair of letters acting in the following way, let x = ((p, q), k, δx),

x(a, b) =

{
(b, a) if δx is T,
(a, b) otherwise.

An ordered list of grid-vectors and operators defines a 1-pixel width band in
the following way.

Definition 4. A grid-curve Γ is a list Γ = [l0, l1, . . . , ln−1] where each li is
either a grid-vector or one of the operators σ+, σ−.

The geometrical interpretation of a grid-curve Γ = [l0, l1, . . . , ln−1] starting
with the pair of letters (a, b) is the polygonal curve PΓ = [P0, P1, . . . , Pn] where
each point Pi is given by:

– P0 = (0, 0) and (a0, b0) = (a, b).

– Pi+1 = Pi +

(ai,bi)−→
li and (ai+1, bi+1) = li(ai, bi) for each i ∈ {0, 1, . . . , n− 1}.

Figure 2 illustrates this construction. This figure also highlights the fact that
each grid-curve defines a one pixel-wide band bounded on each side by a digital
curve and that the segment associated with each grid-vector x = ((p, q), k, δx)
intersects one of these digital curves exactly k + 1 times. More precisely, each
segment starts on one of the two digital curves that form the band, and it
intersects one curve exactly every p+ q steps. In order to simplify the notations
when concatenating two grid-curves, we write Γ (a, b) = (an, bn).

3.2 Christoffel words, interpixel path, RPR

In order to digitize a grid-vector as a piece of digital contour, we make use of
a well-known discrete analog to straight segments, the Christoffel words [2, 12].
They have a lot of equivalent definitions, for instance they are the 4-connected
Freeman chaincode between two consecutive upper leaning points of a digital
straight line, or they are the Lyndon factors of sturmian words (e.g., see [1, 14]).

The Christoffel word of slope q/p over the alphabet (a, b) is denoted by C(a,b)q/p .

We then associate to each element li of a grid-curve Γ = [l0, l1, . . . , ln−1] a word
F(a,b)(li) defined as

F(a,b)

(
(p, q)k

)
=
(
C(a,b)q/p

)n
, F(a,b) (σ−) = b,

F(a,b)

(
(̃p, q)k

)
= abF(b,a)

(
(p, q)k

)
, F(a,b) (σ+) = a.

The word F(a,b)(Γ ) is defined by gluing all F (li). It may contain factors of the
form aa which have no real geometrical interpretation. We thus project this word
in the free group in order to remove these back and forth moves. This reduced
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F(0,1)

((
(1, 2), 2, F

))
= (011)2,

F(0,1)

((
(1, 2), 1, T

))
= 03 · 100,

F(1,0)

((
(3, 1), 1, T

))
= 12 · 0001,

F(0,1)

((
(1, 0), 2, F

))
= 02,

F(0,1)

(
σ+

)
= 0,

F(3,0)

((
(3, 2), 1, T

))
= 32 · 00303,

F(0,3)

(
σ−

)
= 1,

F(3,2)

((
(2, 1), 1, F

))
= 332,

F(3,2)

((
(2, 1), 1, T

))
= 30 · 223,

w = 011011 · 0��31 00 · 1��20 001 · 00 · 0 · 3��20 030��31 332 · 3��02 23,
= 011011 · 000 · 1001 · 00 · 0 · 3030 · 3 · 32 · 323.

Fig. 2. Illustration of the grid-curve Γ = [(1, 2)2, (̃1, 2), (̃3, 1), (1, 0)2, σ+, (̃3, 2), σ−, (2, 1), (̃2, 1)]
starting with the letters (0, 1). Each vector of the polygonal curve PΓ is represented
by an arrow. The interpixel path w obtained by the concatenation of the Freeman
code associated to each element of the grid-curve Γ is shown with a dashed line.

word (each aa = ε, the empty word) is called the interpixel path F ε(a,b)(Γ ). See
Fig. 2.

Now, let (Qi) be the clockwise vertices of some RPR of C and let λi be the
boolean that is true when Qi lies on IP(C). The following sequence defines the
grid-curve of Q, for all i:

1. if
−−−−−→
Qi−1Qi and

−−−−−→
QiQi+1 are not in the same quadrant:

– if λi = T

• if
−−−−−→
QiQi+1 is to the right of

−−−−−→
Qi−1Qi, append as many σ+ as the

number of clockwise π/2 rotations to bring these two vectors in the
same quadrant.

• else append as many σ− as the number of counterclockwise π/2
rotations to bring these two vectors in the same quadrant.

– else append the opposite operators of above paragraph.

2. letting (a, b) be the current orientation context, then
−−−−−→
QiQi+1 is some u−→a +

v
−→
b ; let also p = gcd(u, v).
– if λi = λi+1 append (u/p, v/p)p,

– else append ˜(v/p, u/p)p.

The following proposition formalizes the fact that the previous construction
does build the correct digital contour.

Proposition 1. For any RPR Q of a digital contour C, the interpixel path of
the grid-curve of Q has the same chaincode as C up to conjugacy.

For space reasons, we do not detail the proof here. Using this property we will
be able to validate simplification operations defined on grid-curves by showing
that they preserve the digital contour.
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In order to adopt a local approach to process RPR and the associated grid-
curve, we will consider sublists of such grid-curves. Note that they are also
grid-curves (but they do have extremities unlike grid-curves defined by RPR).

We introduce an equivalence relation between these objects, because they
geometrically define the same one pixel-wide band and preserve the orientation
context.

Definition 5. Two grid-curves Γ = [l0, l1, . . . , ln−1] and Γ ′ = [l′0, l
′
1, . . . , lm−1]

are equivalent, noted Γ ≡ Γ ′, if F ε(0,1)(Γ ) = F ε(0,1)(Γ
′) and Γ (0, 1) = Γ ′(0, 1).

For instance, [(1, 1), (1, 1)] ≡ [(1, 1)2] since 01 · 01 = (01)2 and both curves
leave the alphabet unchanged. On the other hand, Fig. 5 shows a less trivial
example.

4 Simplification rules

In order to compute the canonical representation of a grid path, we define sim-
plification rules, which are detailed in the following subsections:

– Merging rules: given by equations (2) and (3).
– Splitting rules: given by equation (4).
– Operator simplification rules: given in Section 4.4.

When applied to a grid curve Γ , each of these rules generates another grid
curve Γ ′ such that F ε(a,b)(Γ ) = F ε(a,b)(Γ

′) but in each case, we can ensure that

‖Γ‖ < ‖Γ ′‖ (the euclidean length is smaller), or ‖Γ‖ = ‖Γ ′‖ and |F(a,b)(Γ )| <
|F(a,b)(Γ

′)| (same euclidean length but shorter word).

4.1 Grid-vectors fusion rules

Given two vectors −→u = (p, q) and −→v = (r, s) it is well know that the area of the
oriented parallelogram defined by −→u and −→v is simply ps−qr. According to this,
we define the product of x = ((p, q), k, δx) and y = ((r, s), l, δy) as

x⊗ y =

{
ps− qr if δy = F,
pr − qs if δy = T.

The sign, positive or negative, of x ⊗ y has the following geometrical inter-
pretation:

– x ⊗ y < 0. In such case, the grid-curve [x, y] defines a convex vertex of the
RPR that is optimal in the sense that it may not be replaced by a shorter
polygonal curve that stays within OP(C) \ IP(C)◦.

– x ⊗ y = 0. In such case, x and y are co-linear. When δy = F then y may
simply be added to the number of repetitions of x so that [x, y] may be
replaced by [((p, q), k + l, δx)]:

[((p, q), k, δx) , ((p, q), l, F)] ≡ [((p, q), k + l, δx)]. (2)

On the other hand, if δy = T then no simplification is possible and [x, y] is
optimal.
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– x⊗ y > 0. In such case, [x, y] is not optimal and there exist some grid-curve
Γ such that ‖Γ‖ < ‖[x, y]‖.

Therefore we focus our attention on pairs of grid-vectors x and y such that
x⊗ y > 0. There are two cases to consider, whether x⊗ y = 1 or x⊗ y > 1. In
the first case, the two grid-vectors are compatible: there is no integer points in
the triangle formed by (p, q) and (r, s) and these two segments may be replaced
by the segment (p+ r, q + s). This is detailed in Section 4.2. In the second case
however, the latter segment would go outside of OP(C) \ IP(C)◦. Hence, [x, y]
has to be replaced by some grid-curve Γ = [l1, l2, . . . , ln] in which for each i
from 1 to n− 1, li ⊗ li+1 ≤ 0. In section 4.3 we show how to compute Γ in time
proportional to the depth of the continued fraction development of the slopes of
x and y.

4.2 Merging grid-vectors

The following merging operation is based on the well known splitting formula
of digital straight segments (see [23]). This is equivalently known in the field of
word combinatorics as the standard factorization of Christoffel words (see [1, 2]).

Let x = ((p, q), 1, F) and y = ((r, s), 1, F) be two grid-vectors such that x ⊗
y = 1. In such case, x and y may be merged in order to form the grid-vector
z = ((p+ r, q + s), 1, F) so that

[x, y] ≡ [z] and ‖[x, y]‖ > ‖[z]‖.

In particular, a grid-curve of the form [x, x, . . . , x, y] with k copies of x may be
simplified to the shorter [((kp+ r, kq + s), 1, δx)]. Similarly, [x, y, y, . . . , y], with
l copies of y, is merged to [((p+ lr, q + ls), 1, F)]. On the other hand, if both x
and y are repeated more then one time, a more complex simplification operation
(explained in Section 4.3) is needed. By taking into account the possible changes
from the inner to the outer polygon and vice versa, we obtain the following
merging rule:

– Let x = ((p, q), k, δx) and y = ((r, s), l, δy) with either δy = F and min(k, l) =
1 or δy = T and l = 1, then

[x, y] ≡ [z] where z =

{
((kp+ lr, kq + ls), 1, δx) if δy = F.
((kp+ ls, kq + lr), 1,¬δx) otherwise.

(3)

4.3 Split and merge formulae

In order to simplify a grid-curve into a shorter one, we introduce splitting opera-
tions. Given two grid-vectors x and y such that x⊗y > 1, both x and y are split
in a specific manner. The resulting grid-curve is such that merging operations
are sufficient in order to obtain the shortest equivalent grid-curve.

Let x = ((p, q), 1, F) be a non-trivial grid-vector and let [u0;u1, . . . , un] be the
continued fraction development of q/p. We note qi/pi is the i-th convergent of q/p
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Fig. 3. Illustration of the upper and lower splitting operations. On the left, (3/5) is

split to S↓((3/5)) = [ (1/2)2, (1/1) ] and S↑((3/5)) = [ (̃1/1), (2/1), (̃1/2) ]. On the right,

the segment (̃5/3) is split to S↓((̃5/3)) = [(1/2)2, (̃1/1)] and S↑((̃5/3)) = [(̃1/1), (2/1)2].
On both examples, the upper splitting S↑ is shown in red while the lower splitting S↓
is shown in green.

that is the fraction qi/pi = [u0;u1, . . . , ui]. In order to lighten the presentation,
we introduce the following notations: xi = (pi, qi), x−1 = (0, 1), x−2 = (1, 0).
Also, more generally, if y = ((r, s), l, δy) then y−1 = ((s, r), l, δy) and ỹ =
((r, s), l,¬δy) . The following operation is exactly the opposite operation of (3).

Definition 6. The basic splitting of the grid-vector xn is the grid-curve:

S(xn) =

 [x2m−2, x
u2m
2m−1] if n = 2m,

[x
u2m+1

2m , x2m−1] if n = 2m+1,

Computing the inverse of any number from its continued fraction develop-
ment is an easy task. This observation leads to following formula:

if S(x) = [uk, vl] then S(x−1) = [(v−1)l, (u−1)k].

The basic splitting operation is only defined on grid-vector of the form x =
((p, q), 1, δx) with δx = F. We extend it to all segments of multiplicity one.

Definition 7. The upper splitting S↑ and the lower splitting S↓ are defined as
follow, let [uk, vl] = S ((p, q), 1, F)) then

x = ((p, q), 1, F) x = ((q, p), 1, T)

S↑(x) [ (̃v−1)l, (u−1)k−1, ũ ] [ (̃v−1)l, (u−1)k ]

S↓(x) [uk, vl ] [uk, vl−1, ṽ−1 ]

By repetition of the above splittings, any grid-vector may be decomposed in
order to isolate a trivial grid-vector on the left or the right. See Fig. 4 for an
illustration of the following definition.
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←− −→

Fig. 4. In the center, an illustration of the grid-vector x = (̃7, 4). On the left, the

left splitting S←(x) = [(̃1, 0)2, (0, 1), (2, 1)2, (1, 1)]. On the right, the right splitting

S→(x) = [(1, 1), (1, 2)2, (1, 0), (0, 1), (̃1, 0)].

Definition 8. Let x = ((p, q), k, δx) be a grid-vector, the left splitting S←(x)
and the right splitting are defined as follows:

– if k = 1 and x is trivial, S←(x) = S→(x) = [x];

– if k ≥ 2, S←(x) = S← (((p, q), 1, δx)) + [((p, q), k − 1, F)],

S→(x) = [((p, q), k − 1, δx))] + S→ (((p, q), 1, F)) ;

– otherwise, let S↑(x) = [l1, l2, . . . , ln] and S↓(x) = [l′1, . . . , l
′
m]

S←(x) = S←(l1) + [l2, . . . , ln],

S→(x) =

 [l1, . . . , ln−1] + S→(ln) if δx = F,

[l′1, . . . , l
′
m−1] + S→(l′m) if δx = T.

(4)

Proposition 2. Let x = ((p, q), k, δx) be a grid-vector, both left and right split-
tings of x are such that: [x] ≡ [S←(x)] ≡ [S→(x)].

Sketch of the proof. These equivalences come from successive applications of
splitting formula on digital straight segments.

Proposition 3. The number of grid-vector in both left and right splittings of
x = ((p, q), k, δx) is Θ(n) where n is the depth of the continued fraction develop-
ment of q/p.

Proof. It suffices to see that each time a basic splitting operation is performed
(Definition 6), the depth of the continued fraction development of the slopes
decreases by one or two. ut

Since the depth n of a continued fraction q/p = [u0;u1, . . . , un] is smaller than
log2(p+ q), a weaker form of the previous proposition states that the number of
grid-vector is some O(logN) where N is the length of the contour word.

Algorithm 1 illustrates how to simplify a grid-cruve by the use of our split and
merge formulae. The function Merge called on line 15 of Algorithm 1 performs
the following task: the two grid-curves given as input being a right splitting,
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Algorithm 1: Simplification

Input: Γ = [l0, l1, . . . , ln−1] where each li is a grid-vector
1 ∆ = [ ];
2 while Γ is not empty do
3 y ← Γ.pop front() ;
4 if ∆ is empty then
5 ∆.push back(y);

6 else
7 x← ∆.pop back();
8 if x⊗ y < 0 or (x⊗ y = 0 and δy = T) then
9 ∆.push back(x);

10 ∆.push back(y);

11 else
12 if there exist z such that [z] ≡ [x, y] then
13 Γ.push front(z);

14 else
15 Γ ← Merge (S→(x), S←(y)) + Γ ;

16 return ∆;

S→(x) = [r1, r2, . . . , rn] and a left splitting, S←(y) = [l1, l2, . . . , lm], both rn
and l1 are trivial and may be replaced by the grid-vector (1, 1). Boths lists are
then concatenated into C = [r1, . . . , rn−1, (1, 1), l2, . . . , lm]. Finally, if there is a
pair of consecutive grid-vectors u, v in C such that, according to the fusion rules
described by equations (2) and (3), there exist z satisfying [u, v] ≡ [z], then the
pair u, v is replaced by z. This last step is performed iteratively until there are
no such pairs left.

The following proposition states that whenever line 15 of Algorithm 1 is
executed, the grid-curve is simplified in the sense that output curve is strictly
shorter.

Proposition 4. Given two grid-vectors x and y such that x ⊗ y > 1, the grid-
curve Γ = Merge (S→(x), S←(y)) is such that ‖Γ‖ < ‖[x, y]‖.

Sketch of the proof. Consider the grid-curve Γ = S→(x) + S←(y) and the asso-
ciated polygon PΓ = [P0, P1, . . . , Pn], as defined in Section 3.1. Let Pi be the
point between S→(x) and S←(y). One checks that all points P1, P2, . . . , Pi−1,
Pi+1, . . . , Pn−1 lies on the same polygonal contour (inner or outer) while Pi
lies on the other one. The fusion of two grid-vectors removes a points from the
associated polygon. In particular, the first operation performed by Fusion is to
remove Pi from PΓ . Each pair of consecutive grid-vectors u, v from C is such
that either u ⊗ v ≤ 0 or the pair u, v is replaced by a single grid-vector. When
the process stops, the resulting grid-curve ∆ defines a convex region.

Finally, let X be some point far enough from P0 in the direction −→y − −→x .
Consider Π∆ the polygon defined by ∆ followed by the line segments PnX and
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XP0 and, similarly, Πxy the polygon P0PiPnA. The polygon Π∆ is a convex
polygon strictly included in Πxy and thus its perimeter is strictly smaller.

4.4 Simplification rules for operators

As mentioned previously, operator σ+ codes a quadrant change toward the inside
which means that a part of a RPR of the form [x, σ+, y] is locally optimal. On
the other hand, operator σ− may not appear in a MLP since it codes a quadrant
change toward the outside (See Fig. 2). We define local rules to remove the σ−

operators in a grid-curve.
First of all, using the left and right splitting operations defined in the previous

section, we can easily update the grid-curve so that around a σ− operator there
are only trivial grid-vectors. Also, by using the relation [(0, 1)] ≡ [σ−, (1, 0), σ+]
we may only consider trivial grid-vectors with slope 0.

Simplification rules for operator σ− are all local and thus treated in constant
time. These rules are of three types:

Push to the right. The following rules create a shorter grid-curve by replacing a
pattern of the form →↑ by ↗.

[(1, 0), σ−, (1, 0)] ≡ [(1, 1), σ−], and [(̃1, 0), σ−, (1, 0)] ≡ [(̃1, 1), σ−]. (5)

Cancellation rules. Given an occurrence of σ− in a grid-curve, the trivial grid-
vectors right before and after may go back and forth within a single pixel. Such
situation appears in a locally-closed pattern. It is a grid-curve such that: (i) it
includes exactly one or two trivial grid-vectors before σ− and one or two more
after σ−, (ii) it is closed in the sense that the first and last points of PΓ are the
same. Given such locally-closed pattern Γ , if there exists ∆ ∈ {[ ], [σ+], [σ+, σ+]}
such that Γ ≡ ∆ then replace Γ by ∆. When implemented these rules may be
tabulated so as to apply them in constant time.

Correction rules. When performing a left or right splitting operation, we make
the assumption that all points below the grid-vector belongs to the same polygon
(inner or outer) and all those above lies in the other polygon. Although this is
true in general, it may not be the case for extremities. For example, consider the
grid-vector (1, 4) from Fig. 5. In order to obtain a trivial grid-vector right before

σ−, (1, 4) is replaced by S→(x) = [(̃1, 0)4, (̃1, 0)] while the correct substitution

would be to replace (1, 4) by [(̃1, 0)3, (̃0, 1), (1, 0)]. One could modify the splitting
operations in order to take these situation into account but we prefer to use above
splitting operations as is and eventually correct the curve afterward. These errors
are locally-closed patterns in which the curve changes from one polygon (inner or
outer) to the other one an odd number of times. Geometrically, this would imply
that a point belongs to both polygons at the same time, which is impossible.
Our splitting operations may cause only two types of these faulty locally-closed
patterns. Let ∆ = [l1, . . . , lk] be a locally-closed pattern of the grid-curve Γ :
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−→ −→

Fig. 5. Illustration of a grid-curve simplification. On the left Γ =

[(1, 4), σ−, (0, 1)2, σ−, (2, 1)] and on the right ∆ = [(̃1, 0)3, σ+, σ+, (0, 1)2, (̃1, 0)]
and Γ ≡ ∆ since 01111 · 3 · 0 · 22223 = 03 · (1)3 · 1 · 2 · (2)2 · 30 · 2 and both curves
transform the alphabet (0, 1) into (2, 3). On the other hand the euclidean length of ∆
is smaller than the length of Γ .

– if F ε(0,1)(∆) = 0 and ∆ ((0, 1)) = (2, 1). In this case, let x be the trivial grid-

vector right after ∆ in Γ , the pattern ∆+ [x] = [l1, . . . , lk, x] is replaced by
[σ−, x̃].

– if F ε(0,1)(∆) = 0 and ∆ ((0, 1)) = (3, 2). In this case, let y be the trivial

grid-vector with multiplicity one right before ∆ in Γ , the pattern [y] +∆ is
replaced by [σ+, ỹ, σ−].

5 Concluding remarks

We have presented three types of simplification rules (merging rules, splitting
rules and operators simplification rules) that allows to compute the MLP of
any given RPR with local operations. Starting from the interpixel path of some
discrete region, one may use these rules in order to compute its MLP. On the
other hand, the overall computation time would be significantly lower by using
the algorithms presented in [14, 15] since their approach are more straightforward
than the iterative one obtained from our local operations. Nevertheless, given
some discrete contour C and its MLP, if a local perturbation is performed on C,
for instance change a factor 01 by 10 in the contour word, a RPR which is not
the MLP can be deduced directly from the previous one. Using the techniques
presented in this paper, a dynamic computation of the new MLP from this RPR
is possible in time sublinear with respect to the length of the section over which
both MLPs differ. We plan to use this algorithm in digital deformable partition
models where the length of region boundaries have to be computed after each
modification [5, 4].
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