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Abstract. The Minimum Length Polygon (MLP) is an interesting first
order approximation of a digital contour. For instance, the convexity
of the MLP is characteristic of the digital convexity of the shape, its
perimeter is a good estimate of the perimeter of the digitized shape. We
present here two novel equivalent definitions of MLP, one arithmetic,
one combinatorial, and both definitions lead to two different linear time
algorithms to compute them.

1 Introduction

The minimum length polygon (MLP) or minimum perimeter polygon has been
proposed long ago for approaching the geometry of a digital contour [1, 2]. One
of its definitions is to be the polygon of minimum perimeter which stays in
the band of 1 pixel-wide centered on the digital contour. It has many interesting
properties such as: (i) it is reversible [1]; (ii) it is characteristic of the convexity of
the digitized shape and it minimizes the number of inflexion points to represent
the contour [2, 3]; (iii) it is a good digital length estimator [4, 5] and is proven
to be multigrid convergent in O(h) for digitization of convex shapes, where h is
the grid step (reported in [6–8]); (iv) it is also a good tangent estimator; (v) it is
the relative convex hull of the digital contour with respect to the outer pixels [2,
9] and is therefore exactly the convex hull when the contour is digitally convex.

Several algorithms for computing the MLP have been published. We have
already presented the variational definition of the MLP (length minimizer). It
can thus be solved by a nonlinear programming method. The initial computation
method of [1] was indeed an interative Newton-Raphson algorithm. Computa-
tional complexity is clearly not linear and the solution is not exact. We have also
mentioned its set theoretic definition (intersection of relative convex sets). How-
ever, except for digital convex shapes, this definition does not lead to a specific
algorithms. The MLP may also be seen as a solution to a shortest path query
in some well chosen polygon. An adaptation of [10] to digital contour could be
implemented in time linear with the size of the contour. It should however be
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?? Partially funded by ANR project FOGRIMMI (ANR-06-MDCA-008-06).



noted that data-structures and algorithms involved are complex and difficult to
implement. Klette et al. [11] (see also [4, 6]) have also proposed an arithmetic
algorithm to compute it, but as it is presented, it does not seem to compute the
MLP in all cases.3

The MLP is in some sense characteristic of a digital contour. One may expect
to find strong related arithmetic and combinatorial properties. This is precisely
the purpose of this paper. Furthermore, we show that each of these definitions
induces an optimal time integer-only algorithm for computing it. The combinato-
rial algorithm is particularly simple and elegant, while the arithmetic definition
is essential for proving it defines the MLP. These two new definitions give a
better understanding of what is the MLP in the digital world. Although other
linear-time algorithms exist, the two proposed algorithms are simpler than ex-
isting ones. They are thus easier to implement and their constants are better.

The paper is organized as follows. First Section 2 recalls standard definitions.
Section 3 presents how to split uniquely a digital contour into convex, concave
and inflexion zones, the arithmetic definition of MLP follows then naturally.
Section 4 is devoted to the combinatorial version of MLP. Section 5 illustrates
our results and concludes. Due to space limitations, we are not able to provide
the proofs that these definitions induce the MLP, we only give hints and discuss
the algorithms to extract them.

2 Preliminaries

This section presents the generally standard definitions that we will used through-
out the paper, in order to avoid any ambiguity. A polyomino is a set of digital
squares in the plane such that its topological boundary is a Jordan curve. It is
thus bounded. It is convenient to represent a polyomino as a subset of the digi-
tal plane Z2, which code the integer coordinates of the centroids of its squares,
instead of representing it as a subset of the Euclidean plane R2. When seeing
a polyomino as a subset of R2, we will say the the body of the polyomino. For
instance, the Gauss digitization of a convex subset of the plane is a polyomino
iff it is 4-connected. A subset of Z2, or digital shape, is a polyomino iff it is
4-connected and its complement is 4-connected.

In the following, a digital contour is the boundary of some polyomino, rep-
resented as a sequence of horizontal and vertical steps in the half-integer plane
(Z + 1

2 )× (Z + 1
2 ). One can use for instance a Freeman chain to code it. Again,

the body of a digital contour is its embedding in R2 as a polygonal curve. Now,
since the body of a digital contour is a Jordan curve, it has one well-defined
inner component in R2, whose closure is exactly the polyomino whose boundary
is the digital contour. There is thus a one-to-one map from digital contours to
polyominoes, denoted by I.

Given a digital contour C, its inner polygon L1(C) is the erosion of the body
of I(C) by the open unit square centered on (0, 0). Its outer polygon L2(C) is
3 Its edges seem restricted to digital straight segments such that the continued fraction

of their slope has a complexity no greater than two.



the dilation of the body of I(C) by the closed unit square centered on (0, 0).
In the following, the inner and outer polygons play the role of inner and outer
constraints for constructing the MLP. We only deal in this paper with simple
digital contours (or grid continua in the terminology of [8]), therefore both L1(C)
and L2(C) are assumed to be simple polygons.

The relative convex hull leads to a simple and elegant set-theoretic definition
of the characteristic polygon, which is valid in arbitrary dimension. In the fol-
lowing, the notation xy stands for the straight line segment joining x and y, i.e.
their convex hull.

Definition 1. [9]. Let U ⊆ Rn be an arbitrary set. A set C ⊆ U is said to be
U -convex iff for every x, y ∈ C with xy ⊆ U it holds that xy ⊆ C.

Let V ⊆ U ⊆ Rn be given. The intersection of all U -convex sets containing
V will be termed convex hull of V relative to U , and denoted by ConvU (V ).

The set-theoretic MLP of a digital contour C is the convex hull of L1(C)
relative to L2(C). It is easily proven that the MLP of a digitally convex contour
is exactly the convex hull of its digital points.

The standard definition of the MLP of C [1, 8, 4] is the shortest Jordan curve
whose digitization is (very close to) the polyomino of C. More precisely, letting
A be the family of simply connected compact sets of R2, we define:

Definition 2. The minimum perimeter polygon, MPP, of two polygons V,U
with V ⊂ U◦ ⊂ R2 is a subset P of R2 such that

Per(P ) = min
A∈A, V⊆A, ∂A⊂U\V ◦

Per(A), (1)

where Per(A) stands for the perimeter of A, more precisely the 1-dimensional
Hausdorff measure of the boundary of A.

In [7] (Theorem 3), and in [9] it is shown that Equation (1) has a unique
solution, which is a polygonal Jordan cuver whose convex vertices (resp. con-
cave) belong to the vertices of the inner polygon (resp. the vertices of the outer
polygon), and which is also the convex hull of V relative to U . The variational
MLP of C is thus the MPP of L1(C),L2(C).

3 Arithmetic MLP

3.1 Tangential cover and arithmetic properties

We recall that the tangential cover of a digital contour is the sequence of its Max-
imal Digital Straight Segments (MDSS). In the following, the tangential cover is
denoted by (Ml)l=1..N , where Ml is the l-th MDSS of the contour. Let us denote
by θl the slope direction (angle wrt x-axis) of Ml. All indices are taken modulo
the number of MDSS N . Since the directions of two consecutive MDSS can differ
of no greater than π, their variation of direction can always be casted in ]−π, π[
without ambiguity. The angle variation (θl − θl+1) mod [−π, π[ is denoted by



∆(θl, θl+1). For clarity, we will also write θl > θl+1 when ∆(θl, θl+1) > 0. We
always consider the digital contour to turn clockwise around the polyomino. A
couple of consecutive MDSS (Ml,Ml+1) is thus said to be a ∧-turn (resp. ∨-turn)
when ∆(θl, θl+1) is negative (resp. positive). The symbol ∧ stands for “convex”
while the symbol ∨ stands for “concave”.

We have the following theorem from [12], which relates convexity to MDSS
directions. It also induces a linear time algorithm to check convexity.

Theorem 1. [12] A digital contour is digitally convex iff every couple of con-
secutive MDSS of its tangential cover is made of ∧-turns.

For a given DSS M , its first and last upper leaning points are respectively
denoted by Uf (M) and Ul(M), while its first and last lower leaning points are
respectively denoted by Lf (M) and Ll(M). In the same paper, it is proven that
the point Ul(Ml) is no further away than Uf (Ml+1). The same property holds
for lower leaning points.

We may now consider the succession of turns along a digital contour to cut it
into parts. The above-mentioned ordering on leaning points between successive
MDSS guarantees the consistency of the following definition.

· · · ∧Mi ∧ · · · ∧ Mj ∧ Mj+1 ∨Mj+2 ∨ · · · ∨ Mk ∨ Mk+1 ∧ · · ·

. . . convex zone inflexion concave zone inflexion . . .

Definition 3. A digital contour C is uniquely split by its tangential cover into
a sequence of closed connected sets with a single point overlap as follows:

1. A convex zone or (∧,∧)-zone is defined by an inextensible sequence of con-
secutive ∧-turns from (Ml1 ,Ml1+1) to (Ml2−1,Ml2). If it is a proper zone of
C, it starts at Ul(Ml1) and ends at Uf (Ml2), otherwise it starts and ends on
the first point.

2. A concave zone or (∨,∨)-zone is defined by an inextensible sequence of con-
secutive ∨-turns from (Ml′1

,Ml′1+1) to (Ml′2−1,Ml′2
). It starts at Ll(Ml′1

) and
ends at Lf (Ml′2

).
3. A convex inflexion zone or (∧,∨)-zone is defined by a ∧-turn followed by a
∨-turn around MDSS Mi. It starts at Uf (Mi) and ends at Ll(Mi).

4. A concave inflexion zone or (∨,∧)-zone is defined by a ∨-turn followed by a
∧-turn around MDSS Mi′ . It starts at Lf (Mi′) and ends at Ul(Mi′).

Note that a convex or concave zone may be reduced to a single turn between
two successive inflexions. In this case, the zone may or may not be a single
contour point (point A in Fig. 1).

Since a MDSS is contained in a digital straight line, it is formed of exactly
two kind of steps, with Freeman codes c and (c+ 1) mod 4. These codes defines
the quadrant of the MDSS. The quadrant vector is then the diagonal vector that
is the sum of the two unit steps coded by the Freeman codes of the quadrant,
rotated by +π

2 .
We eventually associate pixels to contour points (Ci) as follows:



– the inside pixel in(Ci) of Ci is the pixel Ci −
−→v
2 , where −→v is the quadrant

vector of any MDSS containing it (or the last MDSS stricly containing it at
a quadrant change).

– the outside pixel out(Ci) of Ci is the pixel Ci +
−→v
2 , where −→v is the quadrant

vector of any MDSS containing it (or the last MDSS stricly containing it at
a quadrant change).

Fig. 1 illustrates these definitions. It is clear that inside pixels belong to
∂L1(C) and outside pixels to ∂L2(C).

A

Fig. 1. Left: digital contour, tangential cover. Center: inside and outside pixels, edges
of AMLP(C) in a convex part of C. Right : Geometry of a DSS of slope 2/3 along a
digital contour. The digital contour is drawn in-between the corresponding inside and
outside pixels. They clearly draw the same contour up to a translation. Upper and
lower leaning points are denoted by grey right triangles. The thick red line connects
the first upper leaning point on the inside contour to the last lower leaning point on the
outside contour. The two straight lines define a straight band which separates inside
from outside pixels. The thick red line is in this band, thus in L2(C).

3.2 Definition of the arithmetic MLP of C

The boundary word of any hv-convex polyomino admits a unique factorization
as Q0<10Q3<03Q2<32Q1<21, where Qa<b is written over the two letters {a, b}
and ends by b. The words Qa<b are called its quadrant words. As a corollary,
convex zones of a polyomino admits a unique factorization into a prefix of a
conjugate of Q0<10Q3<03Q2<32Q1<21.

Definition 4. Assume Ci,j is a connected part of a contour, with only two kinds
of steps. The left enveloppe of Ci,j (resp. right enveloppe of Ci,j) is the sequence
of edges of the convex hull of the inside (resp. outside) pixels of Ci,j, such that
the first vertex is Ci, the last vertex is Cj and the edges turn clockwise (resp.
counterclockwise) around the hull.

We may now define a linear analog to a digital contour.



Definition 5. The arithmetic MLP of a digital contour C is the polygon AMLP(C)
defined by zones Ci,j in C, according to its type:

zone type of Ci,j associated part of AMLP(C)

(∧,∧) convex union of the left enveloppe of each quadrant word of Ci,j

(∨,∨) concave union of the right enveloppe of each quadrant word of Ci,j

(∧,∨) cvx-inflexion segment joining the inside pixel of Ci to the outside pixel of Cj

(∨,∧) ccv-inflexion segment joining the outside pixel of Ci to the inside pixel of Cj

Lemma 1. AMLP(C) is a closed polygonal line with vertices in Z2.

Proof. By construction, all vertices of AMLP(C) are in Z2. Clearly, AMLP(C)
is a polygonal line inside each zone of C. All that remains to check is that
inflexion zones links the convex and concave zones correctly, and this is done
using standard properties of MDSS. ut

Let U be the closed unit square centered at (0, 0) and let ⊕ denotes the
Minkowski sum of two sets. We recall that the set C ⊕ U is also the one pixel
wide band L2(C) \ L1(C)◦.

Lemma 2. In a (∧,∧)-zone Ci,j of C, the corresponding edges of AMLP(C)
form a simple polygonal line included in L2(C)◦ \ L1(C)◦, and in Ci,j ⊕ U .

Proof. Consider a single quadrant wordQa<b that is part of a (∧,∧)-zone. For this
part of C, the edges of AMLP(C) form the digital convex hull of the inside pixels
of C so that there cannot be any intersection with L1(C)◦. On the other hand,
again by the digital convex hull property, all the integer points in the AMLP(C),
for this zone, must belong to the set of inner pixels of C. In particular, there are
no points of L2(C). ut

The following lemmata are proven similarly to the previous one.

Lemma 3. In a (∨,∨)-zone Ci′,j′ of C, the corresponding edges of AMLP(C)
form a simple polygonal line included in L2(C) \ L1(C), and in Ci′,j′ ⊕ U .

Lemma 4. In a (∧,∨) or (∨,∧) zone Ci′′,j′′ of C, the corresponding edges of
AMLP(C) form a single straight segment included in L2(C) \ L1(C)◦, and in
Ci′′,j′′ ⊕ U .

Proof. We refer the reader to Fig. 1. The AMLP(C) is in this zone the thick
red segment squeezed in the band that separates inside from outside pixels. The
lemma follows. ut

Theorem 2. AMLP(C) is a simple polygon with boundary in L2(C) \ L1(C)◦.

Proof. Lemmata 2 and 3 guarantee that the restriction of the edges of AMLP(C)
to these parts is always a single polygonal line in L2(C) \ L1(C)◦. Furthermore
these parts have always a pairwise empty intersection. Indeed, taking any two
of these parts, they are defined by two pieces of C, say Cl1,l2 and Cl′1,l′2 . These
pieces are separated by at least one inflexion zone, whose length is at least 1.
Therefore Cl1,l2 ∩ Cl′1,l′2 = 0. Moreover (Cl1,l2 ⊕ U) ∩ (Cl′1,l′2 ⊕ U) is either (i)



empty, (ii) an integer point, (iii) a unit segment. If (i), the inflexion zone is large
enough and the two parts of AMLP(C) may obviously not touch each other. If
(ii) or (iii), the inflexion zone is two surfels long or one surfel long respectively.
We notice furthermore that AMLP(C) ends on one side at an inside pixel and
on the other side at an outside pixel. It is easy to check (there is one 1 surfel
configuration and three 2 surfels configuration) that the two parts of AMLP(C)
have an empty intersection.

Lemma 4 indicates that the edges of AMLP(C) in inflexion zones are also in
L2(C) \L1(C)◦. It is also clear that at a convex junction Ck, AMLP(C)∩ (Ck ⊕
U) is reduced to the point in(Ck), therefore with no other self-intersections. A
symmetric result is obtained at a concave junction. Gathering everything, the
so-formed polygonal line is simple. Jordan theorem concludes it has a finite inner
component. AMLP(C) is thus a polygon with a boundary in L2(C)\L1(C)◦. ut

We finish by providing an algorithm to compute AMLP(C).

Algorithm 1: Computation of AMLP(C)
Compute (Mi)i=1..N the tangential cover of C ;1

Decompose (Mi)i=1..N in (α, β)-zones; // where α, β ∈ {∧,∨} (Definition 3)2

S ← ();3

for each (α, β)-zone z of C do4

add to the list S the part of AMLP(C) associate to z; // (Definition 5)5

return S6

Theorem 3. Algorithm 1 computes AMLP(C) in time linear with respect to the
length of C.

Proof. Let n be the number of points of C. Computation of the tangential cover
on line 1 is performed in linear time according to [13]. The computation on line
2 is clearly proportional to N which is also O(n). Finally, on line 5, there are two
cases to consider. Given a convex or concave zone, the AMLP(C) is some convex
hull of a simple polygonal line which is computed in time proportional to the
length of the zone using [14] or [15]. Given an inflexion zone, the computation is
reduced to a segment, thus a O(1) operation. Total computation time is O(n).

ut

3.3 AMLP(C) is the MLP of C

In order to show the equivalence between AMLP(C) and the convex hull of
L1(C) relatively to L2(C), we need the following technical lemma.

Lemma 5. Convex vertices of AMLP(C) are inside pixels of C (i.e. ∈ ∂L1(C)),
concave vertices of AMLP(C) are outside pixels of C (i.e. ∈ ∂L2(C)).



Proof. We already know that in a convex zone of C, vertices of AMLP(C) are by
Definition 5 inside pixels with strictly decreasing edge directions. In a concave
zone of C, vertices of AMLP(C) are outside pixels with strictly increasing edge
directions. Around an inflexion zone of direction θi, one may show that θi−1 > θi,
where θi−1 is the slope of the previous edge of AMLP(C), imposes a (∧,∨)-zone,
so the vertex is the inside pixel of an upper leaning point. The reasonning is
similar when θi−1 < θi. ut

We can now prove that the polygon AMLP(C) is the minimum perimeter
polygon of L1(C), L2(C), or the so-called MLP of C in the terminology of [4].

Theorem 4. If C is a simple 4-connected digital contour, then AMLP(C) is
the convex hull of L1(C) relative to L2(C) or, otherwise said, AMLP(C) is the
intersection of every L2(C)-convex set containing L1(C).

Proof. We proceed in four steps :

1. AMLP(C) is a L2(C)-convex set containing L1(C). Using Theorem 2 along
with Lemma 5 one concludes that if there exist x, y ∈ AMLP(C) such that
xy 6⊂ AMLP(C) but xy ⊂ L2(C) then xy splits L2(C)c in two disjoint
components.

2. Every convex and every concave vertex of AMLP(C) belongs to every L2(C)-
convex set containing L1(C). For convex vertices, this is direct from Lemma 5.
For a concave vertex v, using Lemma 3 one may find a pair of point x, y ∈
L1(C) such that v ∈ xy ⊂ L2(C).

3. Every edge of AMLP(C) belongs to every L2(C)-convex set containing L1(C).
By lemmata 2, 3 and 4, no edge from AMLP(C) intersect L2(C)c so that
the previous step of this proof allows to conclude.

4. Points (2) and (3) implies ∂AMLP(C) is included in every L2(C)-convex set
containing L1(C), which proves that AMLP(C) is included in the intersec-
tion of every L2(C)-convex set containing L1(C). Being itself such a relative
convex set (point (1)), it is necessarily the convex hull of L1(C) relative to
L2(C). ut

4 Combinatorial definition

Based on the combinatorial characterization of digital convexity obtained in [15],
we propose a new algorithmic definition of the minimum length polygon. Given
an arbitrary ordered alphabet A = {a1, a2, . . . , an} with the order a1 < a2 <
· · · < an, written A = {a1 < a2 < · · · < an} for short, we extend this order
to words over A using the lexicographic order. We note |w|a the number of
occurences of the letter a in w and |w| =

∑
a∈A |w|a is the length of w. Let An

be the set of all words of length n over A, in particular A0 = {ε} where ε is
called the the empty word. A word w is non-empty if w 6= ε. The i-th letter of
a word w is w[i] and we refer to factors of w like this : w = w[1 : i − 1] · w[i :
i+j]·w[i+j+1 : n], where · is the concatenation and |w| = n. By reference to the
Freeman coding, given a word w ∈ {0, 1, 2, 3}n the translation vector associated
to w is −→w = (|w|0 − |w|2, |w|1 − |w|3).



Definition 6. A non-empty word w over the ordered alphabet A is a Lyndon
word if w < v for any non-empty word v such that w = uv. We note LA the set
of all Lyndon words over A.

Theorem 5 ([16] Theorem 5.1.1). Any non-empty word w over A admits a
unique factorization as a sequence of decreasing Lyndon words : w = ln1

1 ln2
2 · · · l

nk

k

with l1 > l2 > · · · > lk where ni ≥ 1 and li ∈ LA for all 1 ≤ i ≤ k.

We define the function FLF, called first Lyndon factor, as FLF(w,A) =
(l1, n1) where w = ln1

1 ln2
2 · · · l

nk

k is the unique factorization of w in decreasing
Lyndon words according to the ordered alphabet A.

Introduced by Christoffel in [17], Christoffel words were reinvestigated by
Borel and Laubie in [18]. Since then their impressive combinatorial structure
has been studied by many, see [19] for a comprehensive self-contained survey.
Here is one of the many equivalent definitions of Christoffel words.4

Definition 7. A Christoffel word on the alphabet {a < b} is the Freeman code
of a the path joining two consecutive upper leaning points of a DSS with positive
slope according to the convention that a codes an horizontal step and b codes a
vertical one.

Once again, referring to the Freeman code, one defines the slope of a word as
ρ(w) = |w|b/|w|a with the convention that 1/0 = ∞. In the case of Christoffel
words, unlike the general case, there is a direct link between lexicographic order
and the slope : u, v ∈ Ca<b =⇒ (u < v ⇐⇒ ρ(u) < ρ(v)) .

A convex polyomino being composed of only one convex zone the quad-
rant words Qa<b provide a natural decomposition of its border in four quadrant
words. Our combinatorial view of convexity is based the following result which
characterizes convex quadrant words.

Theorem 6 ([15]). A hv-convex polyomino P is convex if and only if the factor-
ization as decreasing Lyndon words of each quandrant words Qa<b = ln1

1 ln2
2 · · · l

nk

k

is such that li ∈ Ca<b for all 1 ≤ i ≤ nk. Moreover, in the case where P is con-
vex, for each quadrant, the edges of its convex hull coincide with the vectors
ni
−→
li .

4.1 Definition of the CMLP

We define the combinatorial minimum length polygon algorithmically using Al-
gorithm 3 which simply computes vertices given by a list a edges determined by
Algorithm 2. We suppose that the word w codes the boundary of a polyomino
P starting from the point (x0, y0) the lowers point among the leftmost points of
P (i.e. x0 = min{x|(x, y) ∈ P} and y0 = min{y|(x0, y) ∈ P}).

In order to illustrate how Algorithm 2 works, let us discuss the geometrical
interpretation of the modifications performed to the alphabet A in Algorithm 2.
First, notice that initially the alphabet is set as A = {3 < 0 < 1 < 2} as we
4 These words are sometimes refered as primitive lower Christoffel words.



Algorithm 2: nextEdge
Input: (u, n,A) such that u ∈ An and A = {a1 < a2 < a3 < a4}.
Output: (x, l, A) with x ∈ Z2, l ∈ N.
(v, k, inC)← FLF(u,A);1

x = k−→v ; l = k|v|;2

if v = a2 then3

A← {a4 < a1 < a2 < a3};4

x← x−−→v ;5

else if not inC then6

u[0]← a3;7

A← {a4 < a3 < a2 < a1};8

(x, l, A)← nextEdge(u, n,A)9

return (x, l, A)10

Algorithm 3: Computation of vertices from Algorithm 2.
Input: w ∈ {0, 1, 2, 3}n the boundary word of P .
Output: (x0, x1, x2, . . . ) a list of vertices that form the CMLP of P .
x← (0, 0); i← 0; A← {3 < 0 < 1 < 2};1

w ← w · 10; n← n+ 2 ;2

while w 6= ε do3

(v, l, A) = nextEdge(w, n,A);4

xi+1 ← xi + v; i← i+ 1 ;5

w ← w[l + 1 : n]; n← n− l ;6

return (x0, x1, x2, . . . , xi)7

consider a convex zone with quadrant word Q0<1. All through the algorithm, it
shall always be the case that when analysing a convex quadrant word Qa2<a3

the alphabet A is set as {a1 < a2 < a3 < a4} so that the word a2a1 codes a
quadrant change while a3a4 codes a change of convexity type.

A bijective map µ : A → A over the letters A extends naturally to any
word w ∈ An as µ(w) = µ(w[1])µ(w[2]) · · ·µ(w[n]). Using the notation µ(A) =
{µ(a1) < µ(a2) < . . . }, clearly µ(w) ∈ LA ⇐⇒ w ∈ Lµ(A) and µ(w) ∈
Ca<b ⇐⇒ w ∈ Cµ(a)<µ(b). Algorithm 2 uses this fact so that instead of applying
transformations to the whole word w, only the order relation over the four letter
alphabet is changed. Let w by the contour word of C over A = {3 < 0 < 1 < 2}
and define r : A → A as r(3) = 2, r(0) = 3, r(1) = 0 and r(2) = 1. One verifies
that the contour coded by r(w) corresponds to a rotation by π/2. This explains
line 4 of Algorithm 2 which is called when a quadrant change occurs.

Similarly, let A = {a1 < a2 < a3 < a4} and define the bar operator
( ) as a1 = a4, a2 = a3, a3 = a2 and a4 = a1. Consider a quadrant word
Qa<b, one verifies that Qa<b corresponds to a reflexion by the line y = x if
{a, b} ∈ {{0, 1}, {2, 3}} or by the line y = −x if {a, b} ∈ {{0, 3}, {1, 2}}. Roughly
speaking, this transformation turns this part of the contour inside out, so that



computing the left enveloppe of Qa<b is equivalent to the computation of the
right enveloppe of Qa<b. This explains line 8 of Algorithm 2.

The modification of the first letter of w at line 7 is due to the fact that w
code the inter-pixel path. Since the condition at line 6 detects a change in the
convexity type, the inner pixel adjacent to the step coded by w[1] must now be
consider as an outside pixel. This is done by switching the value of the first letter
of w from a2 to a3.

Definition 8. The combinatorial MLP of a digital contour C, noted CMLP(C),
is obtained by joining consecutives vertices given as output of Algorithm 3.

We suppose that the lower pixel among the leftmost pixels of the polyomino P is
centered at (0, 0). This ensures that point v0 = (0, 0) is a vertex of CMLP (C).
Moreover, in order to close the polygonal path computed, the word 10 is added
at the end of w so that an extra vertex located at (0, 0) is added at the end of
the list closing the polygonal line.

Proposition 1. The AMLP (C) and CMLP (C) are the same.

Proof. Quadrant changes are detected by the condition at line 3 of Algorithm 2.
Note that in such case, the first letter is ignored since the inter-pixel path is
always one step longer than the corresponding part of the border of L1(C).

On a concave part of C, the reversal of the alphabet at line 8 of Algorithm 2
reverses the perspective and allow to use exactly the same algorithms to compute
the convex hull of the outside pixels of C. Finally, it remains to check that after
having performed the operations on lines 7 and 8 of Algorithm 2, the edge com-
puted by FLF(w,A) is the same as the segment of the AMLP(C) corresponding
to this inflexion zone. ut

4.2 An adapted implementation of FLF

In order to compute function FLF one may use Duval’s algorithm [20] which
computes the pair (u, k) = FLF(w,A) for any word w with a time complexity
of O(k|u|). This optimal algorithm is attributed to [21] in [22]. In Algorithm 2
we compute (u, k) = FLF(w,A) but, in the case where u is not a Christoffel
word, we do not care about this specific output (u, k). Based on this idea, we
propose a modified version of Duval’s algorithm. Algorithm 4 has the ability to
determine dynamically if the word being read might lead to a Christoffel word
and otherwise the computation immediately stops. Note that by removing lines
identified by numbers from Algorithm 4, one obtains exactly Duval’s algorithm.
The extra variables p and q have the following interpretation: p is the biggest
index smaller than j such that w[1 : p] is a Christoffel word, while q is the
smallest index bigger or equal to j such that w[1 : q] might be a Christoffel
word. The way p and q are updated is based on the following result.

Proposition 2. Given a Christoffel word w, define χw = {wz ∈ Ca<b | z 6= ε}.
For any x ∈ χw, there exist k ≥ 1 and v such that x = wkvz for some z where



Algorithm 4: Duval++
Input: (w, n, {a1 < a2 < a3 < a4}) where w ∈ {a2, a3} · {a1, a2, a3, a4}n−1.
Output: (u, k, b) where b is a boolean such that b ⇐⇒ (u, k) = FLF(w).
i← 1; j ← 2;
p← 1; q ← 2;1

while j ≤ n and w[i] ≤ w[j] do
if w[i] = w[j] then

if j = q then2

q ← q + p;3

i← i+ 1;

else
if j 6= q or w[j] 6= a3 then4

return (ε, 0, false);5

tmp← p; p← q; q ← 2q − tmp;6

i← 1;

j ← j + 1;

return
“
w[1 : j − i], b j−1

j−i
c, true

”
;

w = uv is the unique factorization of w as two Christoffel words5 if |w| ≥ 2 and
v = b if |w| = 1. Moreover, wlv ∈ Ca<b for any l ≥ 1.

Proof. This is mainly due to a result of [18, 23] stating that any w = uv ∈ Ca<b

is obtained in a unique way as (u, v) = H1 ◦H2 ◦ · · · ◦Hn(a, b) where each Hi is
either the function (x, y)→ (xy, y) or (x, y)→ (x, xy). ut

Proposition 3. Algorithm 3 computes CMLP(C) in time proportional to the
length of C.

Proof. It suffices to show that the time complexity of Algorithm 2 is bounded by
O(l) where (v, l) is its output. First, suppose there is no recursive call. In this
case, time complexity is simply given by Duval’s algorithm.

On the other hand, suppose that there is a recursive call. This means that the
call to FLF has output (ε, 0, false). Let m be the number of letters read in this
first call to Algorithm 4. One may show that in such case, in the recursive call
the computation of FLF will provide an output of the form (v, k, true) where
k|v| ≥ m/2. ut

5 Concluding remarks

We have presented two different definitions for the MPL of a digital contour,
one based on an arithmetic approach, the other based on a combinatorial one.
Both are shown to be the unique MLP of the contour and linear time algorithm
5 The factorization of a Christoffel word as a product of two Christoffel word is equiv-

alent to the splitting formula of DSS.



to compute them are provided. Even though we did not showed it, our notion of
MLP has no problem dealing with one pixel wide areas, i.e. holes or bars of one
pixel wide, as illustrated in Fig. 2.

Finally, note that one could modify the given algorithms in order to remove
aligned points. This is done in a time proportional to the number of vertices of
the MLP so that the overall linearity of the algorithms is not affected.

Acknowledgment. The authors would like to thank François de Vieilleville
for helpful discussions about MLP.

Fig. 2. Examples of CMLP
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