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Abstract. We work on the Réveillès hyperplane P(v, 0, ω) with normal
vector v ∈ Rd, shift µ = 0 and thickness ω ∈ R. Such a hyperplane is
connected as soon as ω is greater than some value Ω(v, 0), called the
connecting thickness of v with null shift. In the case where v satisfies the
so called Kraaikamp and Meester criterion, at the connecting thickness
the hyperplane has very specific properties. First of all the adjacency
graph of the voxels forms a tree. This tree appeared in many works both
in discrete geometry and in discrete dynamical systems. In addition,
it is well known that for a finite coding of length n of discrete lines,
the number of palindromes in the language is exactly n+ 1. We extend
this notion of language to labeled trees and we compute the number
of distinct palindromes. In fact for our voxel adjacency trees with n
letters we show that the number of palindromes in the language is also
n+1. This result establishes a first link between combinatorics on words,
palindromic languages, voxel adjacency trees and connecting thickness
of Réveillès hyperplanes. It also provides a better understanding of the
combinatorial structure of discrete planes.
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1 Introduction

We work on Réveillès hyperplanes P (v, 0, ω) with normal vector v ∈ Rd, shift
µ = 0 and thickness ω ∈ R. In the case where v satisfies the so called Kraaikamp
and Meester criterion [KM95], at the connecting thickness the hyperplane has
very specific properties. In fact the hyperplane P(v, 0, ω) is also generated by the
geometric palindromic closure [DV12] according to a given directive sequence ∆.
If we compute finite parts of the discrete plane by using prefixes of length m
of ∆, we construct a finite component called Sm. This component Sm is com-
posed of n points in Rd and the adjacency graph is in fact a tree [DV12]. These
trees appear in many works in discrete geometry [BDJP14,BJJP13,DV12], in
discrete dynamical systems in particular for percolation problems [KM95]. They
can be seen as one among many generalizations of Christoffel words. In dimen-
sion d = 2, we indeed generate by geometric palindromic closure all discrete
lines having null shift and irrational slope. The adjacency graph in this case is
a chain with n+ 1 nodes which may be seen as a tree with two branches. Since
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the work of Droubay, Justin and Pirillo [DJP01], we know that the number of
palindromes in a factor of length n of every Sturmian word is exactly n+1. This
result is based on techniques of combinatorics on words including generation of
Sturmian words by palindromic closure [dL97]. The proof used extensively the
notion of unioccurrence of palindromes in Sturmian words given by palindromic
closure. That is the first occurrence of each prefix palindrome on a Sturmian
word appears exactly at each palindromic closure step [JV00]. This key point
could be generalized and we prove that for hyperplanes with null shift, the gen-
eration by palindromic closure gives birth to a geometric notion of unioccurrence
of bidimensional palindromes. This is a general property for discrete objects con-
structed by geometric palindromic closure and, in this paper, we prove that the
number of palindromes in the adjacency tree with n + 1 nodes associated with
Sm has exactly n + 1 palindromes. In other word, each node of the adjacency
tree is coded by a unique palindrome. Finally, we provide examples of trees of
size n which, unlike finite words, contain more than n+ 1 palindromes.

2 Words, trees and palindromes

Given a word w ∈ Σ?, we define its language, noted L(w), as the set of all its
factors, L(w) = {u ∈ Σ? | w = pus with p, s ∈ Σ?}. The palindromic language
of w, noted Pal(w), is the restriction of L(w) to its palindromes, Pal(w) = {u ∈
L(w) | u is a palindrome}.

For example, let w = abaaaba, we have Pal(w) = {ε, a, b, aa, aaa, aba, baaab,
abaaaba}. In this example, we have

|Pal(w)| = |w|+ 1. (1)

These words were first considered by Droubay, Justin and Pirillo who showed,
in particular, that the factors of Sturmian words reach this bound [DJP01]. Be
careful, this property on the maximal number of palindromes in a finite word is
called by two terms in the recent literature : “rich” following a remark in [DJP01]
and “full” following a definition in [BHNR04], we call it simply “maximal number
of palindromes”.

The above definitions are generalized to labeled trees as follow. Let T be a
tree with labeled edges. Given an edge e its label is denoted by π(e). A path
in T is a sequence of vertices [v1, v2, . . . , vn] such that, for each i from 1 to
n − 1, (vi, vi+1) is an edge of T . A path is called simple if it never passes
twice on the same vertex. Since, we only consider simple paths, from now on,
the word path is used to designate simple paths. Since, in a tree, each pair of
vertices is connected by a unique path, the language of a labeled tree, noted
L(T ), is defined by the set of all possible paths in this tree. More precisely, let
PT (u, v) = [v1, v2, . . . , vn] be the path from the vertex u to the vertex v, we
write πT (u, v) = π(v1, v2) · · ·π(vn−1, vn) the word obtained by concatenation of
the labels of all the edges along this path, we note

L(T ) = {πT (u, v) | u, v are vertices of T } .
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Consequently, we define the palindromic language of a labeled tree as the restric-
tion of its language to its palindromes, Pal(T ) = {w ∈ L(T ) | w is a palindrome}.
Figure 1 illustrates these definitions.

a

b

a

a

b b

Fig. 1. A labeled tree T with language L(T ) = {ε, a, b, aa, ab, ba, bb, aaa, aab, abb, baa,
bab, bba, aabb, babb, bbaa, bbab} and palindromic language Pal(T ) = {ε, a, b, aa, bb, aaa,
bab}.

Note that a word is a special case of degenerated labeled tree where all
vertices form a single branch. Let vert(T ) be the set of vertices of T . Since the
number of vertices in a tree is exactly one more than the number of edges, for
words that satisfy Equation (1), this property is translated to trees as

|Pal(T )| = |vert(T )|. (2)

3 Discrete hyperplanes with a tree structure

For d ≥ 2, let D = {1, 2, . . . , d}. In the following, the canonical basis of Rd is
(ei)i∈D and 〈 . , . 〉 denotes the usual scalar product on Rd. We consider arithmeti-
cal discrete hyperplanes as defined in [Rév91,AAS97]. Given a non zero vector
v ∈ Rd and two real numbers ω and µ, the arithmetic discrete hyperplane with
normal vector v, shift µ and thickness ω is the subset of Zd defined by

P(v, µ, ω) = {x ∈ Zd | 0 ≤ 〈v,x〉+ µ < ω}.

Given two points x, y ∈ Zd, we say that x and y are adjacent if there exists
i ∈ {1, 2, . . . , d} such that x = y ± ei. Hereafter, we consider subsets of Zd as
labeled graphs using points of Zd as vertices and this adjacency relation as edges.
The label of an edge is given by the index of the coordinate that differs from one
point to the other so that the edge (x, x±ei) is labeled by i. Since the adjacency
relation is symmetric, we consider non-oriented edges so that the edge (x, y) is
the same than (y, x). On the other hand, given a path [x1, x2, . . . , xn], each edge
along this path is traveled in a specific direction, either ei or −ei. Let (x, y) be
an edge labeled by i, we say that a path that goes from x to y following this edge
makes a positive step if y− x = ei while it makes a negative step if y− x = −ei.

Following the classical terminology from graph theory, a subset U ⊂ Zd is
connected if its graph is connected, and U is a tree if it is connected and acyclic.
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Given a vector v ∈ Rd \ {0} and µ ∈ R, the set of thicknesses ω such that
P(v, µ, ω) is connected is a right unbounded interval of R+. Its lower bound
Ω(v, µ), is known as the connecting thickness of v with shift µ. It may be com-
puted by means of the Fully subtractive algorithm [BB04,JT09,DJT09,DPV14].

3.1 Construction of thin discrete planes

We consider the multidimensional continued fraction algorithm Unordered Fully
Subtractive (UFS). We give here a short description of this algorithm. A detailed
description may be found in [DPV14]. For each k ∈ D, let σk ∈ SL(d,Z) be such
that

σk(v1, v2, . . . , vd) = (v1 − vk, . . . , vk−1 − vk, vk, vk+1 − vk, . . . , vd − vk)

Let R+ = {x ∈ R | x > 0}. Given a vector v = (v1, . . . ,vd) ∈ Rd+, the UFS

algorithm defines a sequence (v(n))n≥1 and a directive sequence ∆ = δ1δ2 · · ·
with each δi ∈ D as follows. Let v(1) = v and for n ≥ 1:

– Let k be the smallest index of a minimal coordinate of v(n), so that

v
(n)
k = min

(
v
(n)
1 ,v

(n)
2 , . . . ,v

(n)
d

)
,

then, v(n+1) = σkv
(n) and δn = k.

Clearly, the coordinates of the vectors v(n) might reach 0 but may never be
negative. Let Fd be the set of vectors such that UFS never cancels a coordinate,

Fd = {v ∈ Rd+ | v(n) ∈ Rd+ for all n ≥ 0}.

Note that every vector in Fd defines a unique infinite sequence in Dω while
each non ultimately constant sequence ∆ in Dω is produced by an infinity of
vectors from Fd. Indeed, multiplying a vector by a non zero constant does not
alter the directive sequence. But even different directions, which means non pro-
portional vectors, may produce the same sequence, e.g. (1,

√
2, 3) and (1,

√
2, 4).

However, a sequence ∆ in which each letter k ∈ D occurs infinitely often is pro-
duced by vectors of a unique direction. This happens if and only if v satisfies the
criterion of Kraaikamp & Meester [KM95], namely (d−1) ‖v(n)‖∞ < ‖v(n)‖1 for
all n ≥ 0, where ‖v‖∞ = max(v1, . . . ,vd) and ‖v‖1 = v1+ · · ·+vd. When d = 2,

this criterion becomes simply max(v
(n)
1 ,v

(n)
2 ) < v

(n)
1 +v

(n)
2 , which is satisfied by

any vector in F2. When d ≥ 3, Kraaikamp and Meester [KM95] have shown that
the set of vectors satisfiying this criterion has a zero Lebesgue measure. As an
example, the vector v = (α, α+α2, 1), where α is the real root of x+x2 +x3−1,
satisfies the criterion.

From a directive sequence ∆, we build a sequence (Sn)n≥0 of finite subsets
of Zd the limit of which, S∞, is the geometric palindromic closure of ∆ [DV12].
This construction generalizes the one proposed in [BDJP14], and was studied
in [BJJP13] for the case d = 3. In general, S∞ is not an arithmetic discrete
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hyperplane but is always embedded in P(v, 0, Ω(v, 0)). Recent work by the same
authors [DPV14] shows that if each letter k ∈ D appears infinitely often in ∆,
then S∞ is exactly P(v, 0, Ω(v, 0)).

We present two constructions, one using symmetries and the other using
translations. Both constructions are equivalent and are used in order to demon-
strate our main result. In all the sequel, v is a fixed vector in Fd and ∆ is the
associated directive sequence.

3.2 Construction by symmetries

Let symy(x) denote the homothetic transformation of x with center y and scale
−1, that is symy(x) = 2y − x. We build a sequence (Sn)n≥0 of finite subsets of

Zd. For this purpose, we use auxiliary sequences (Xn)n≥0 and, for each i ∈ D,

(Y
(i)
n )n≥0 and (s

(i)
n )n≥0, where Xn, Y

(i) ∈ ( 1
2Z)d, and s

(i)
n ⊂ Zd.

The construction process is:

– Initialization:
S0 = {0} ⊂ Zd, X0 = 0 ∈ Zd and for each i ∈ D, Y

(i)
0 = 1

2ei, s
(i)
0 = ∅.

– Iteration step, for all n ≥ 1:

Y
(i)
n =

{
sym

Y
(δn)
n−1

(Xn−1) if i = δn;

Y
(i)
n−1 otherwise.

s
(i)
n =

{
sym

Y
(δn)
n−1

(Sn−1) if i = δn;

s
(i)
n−1 otherwise.

Xn = Y
(δn)
n−1 , Sn = Sn−1 ∪ sym

Y
(δn)
n−1

(Sn−1)

Theorem 1 ([DV12]). For all n ≥ 0, we have:

(i) Sn is symmetric about Xn and s
(i)
n is symmetric about Y

(i)
n , which means

Sn = symXn(Sn) and s
(i)
n = sym

Y
(i)
n

(s
(i)
n ).

(ii) The sets s
(1)
n , s

(2)
n , . . . , s

(d)
n are all connected, either empty or adjacent to 0

and pairwise non-adjacent,

(iii) Sn = {0} ∪ s(1)n ∪ · · · ∪ s(d)n .
(iv) The graph of Sn is a tree.

See Figure 2 and 3 for some examples of sets Sn. Note that in these figures,
as it is usually the case when working with discrete planes, a points of x ∈ Zd is
displayed as a voxel centered in x.

We may now formulate the main result of this paper.

Theorem 2. For each n ≥ 0, |Pal(Sn)| = |vert(Sn)|.

The proof of this theorem is provided in Section 4. More precisely, Theorem 2
is a direct consequence of Lemma 16 where the existence of an explicit bijection
between vert(Sn) and Pal(Sn) is established.
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x y

z

S0 S1 S2

S3

←→ 1 2 1
3

2 11

S4 S5

Fig. 2. Construction of the set S5 for ∆ = 12321 · · ·. The top row shows S0, S1, S2. The
middle row shows S3 along with its labeled graph structure. The bottom row shows S4

and S5. The colors identify the sets s
(i)
n while the origin is shown in gray. In each case,

the origin is the only point connecting the subsets s
(i)
n . The palindromic language of

S3 is Pal(S3) = {ε, 1, 2, 3, 121, 131, 232, 12321}.

3.3 Construction by translations

The construction of the sequence (Sn)n≥0 may equivalently be formulated in
terms of translations. Indeed, call symmetric a set U ⊂ Rd such that there exists
a point x ∈ Rd that satisfies U = symx(U), one checks that for any point y ∈ Rd,
we have symy(U) = U + t, where t = 2 (y − x).

The sequence of translation vectors (tn)n≥1 is defined directly by the UFS
algorithm. For each n ≥ 1, let ωn be the value of the coordinate of v(n) that has
been subtracted from the other ones. Using the notation σᵀ for the transposed
of matrix σ, we have

ωn = 〈v(n), eδn〉 = 〈σδn−1
v(n−1) , eδn〉 = 〈σδn−1

σδn−2
· · ·σδ1v , eδn〉

= 〈v , σᵀ
δ1
σᵀ
δ2
· · ·σᵀ

δn−1
eδn〉.

The vector tn is defined as tn = σᵀ
δ1
σᵀ
δ2
· · ·σᵀ

δn−1
eδn so that

ωn = 〈v, tn〉 > 0. (3)

Theorem 3 ([DV12], § 4). For each n ≥ 1, Sn = Sn−1 ∪ (Sn−1 + tn).

Theorem 4 ([DV12], Lemmas 5 and 6). For each k ∈ D, let nk be the
smallest index such that δnk = k, then

t1 + t2 + · · ·+ tnk = ek.
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Fig. 3. On the left, the set S8 for the directive sequence ∆ = 12321231 · · ·. Subset s
(1)
8

is shown in red, s
(2)
8 in green and s

(3)
8 in blue. Note that, up to a translation, s

(2)
8 is

equal to S5 shown in Figure 2. On the right, the graph structure of S8 where the longest
palindromic path 1232121121232123231121211323212321211212321 is highlighted.

Moreover, let i and j be such that δi = δj but for all i < k < j, δi 6= δk, then

ti+1 + ti+2 + · · ·+ tj = ti.

Theorem 3 clearly implies that for each point x ∈ S∞ there exists n ≥ 0
such that x =

∑n
i=1 εiti where each εi ∈ {0, 1}. We consider the function ψ that

maps finite binary words to points of S∞

ψ :

{
{0, 1}? → S∞
ε1 · · · εn 7→

∑n
i=1 εiti

The second part of Theorem 4 implies that ψ is not a bijection since more than
one word ε may be mapped to the same point.

Lemma 5 ([DV12], Th. 4). For all n ≥ 0, Sn = {ψ(ε) | ε ∈ {0, 1}n} .

3.4 More about Sn

We now introduce some technical properties of Sn. For each n ≥ 0, let Hn be a
designated point of Sn defined by Hn = ψ(1n).

Lemma 6. For each n ≥ 0, we have

(i) if x ∈ Sn, then x 6= 0⇒ 〈x,v〉 > 0,
(ii) if x ∈ Sn, then x 6= Hn ⇒ 〈x,v〉 < 〈Hn,v〉,

(iii) Hn = symXn(0),
(iv) Hn+1 ∈ Sn+1 \ Sn.

Proof. Properties (i) and (ii) are consequences of Equation (3). Indeed, since
ωi > 0 for all i, any word ε with at least one occurrence of the letter 1 is such
that 〈ψ(ε),v〉 > 0. Similarly, any word ε′ with at least one occurrence of the
letter 0 is such that 〈ψ(ε′),v〉 <

∑n
i=1 ωi = 〈Hn,v〉.

For property (iv), since 〈Hn+1,v〉 = 〈Hn,v〉+ ωn+1 and ωn+1 > 0, we have
Hn+1 6∈ Sn. Otherwise it would contradict property (ii).



8 Domenjoud, Provençal, Vuillon

Finally, for property (iii), the case n = 0 is trivial. For n ≥ 1, by property
(iv), there exists x ∈ Sn−1 such that Hn = symXn(x). We have

〈Hn,v〉 = 〈2Xn − x,v〉 = 2 〈Xn,v〉 − 〈x,v〉 ,

By property (ii), Hn is maximal in the sense that 〈Hn,v〉 = max{〈y,v〉 | y ∈ Sn}
which implies that x in minimal in the sense that 〈x,v〉 = min{〈y,v〉 | y ∈
Sn−1}. So, by property (i), we have x = 0. ut

4 Proof of the main theorem

The four following Lemmas provide a proof to Theorem 2. A path in Sn in coded
by a word where each letter k codes a movement by ek or −ek. Thus, in general,
the word coding a path alone does not contain enough information to retrieve
the path itself. Nevertheless, when working in a set Sn, the structure of Sn is
restrictive enough to partially retrieve this information.

Lemma 7. Let i, j ∈ D and x ∈ Sn, then i 6= j ⇒ x+ ei + ej 6∈ Sn.

Proof. Let vi1 ≤ vi2 be the two smallest coordinates of v. At the kth iteration
of the UFS algorithm, the value ωk is subtracted from each coordinate of vk

except one. In particular, it is either subtracted to vki1 , to vki2 or both. Since
v ∈ Fd, for all n ≥ 1, all coordinates of vn are strictly positive and therefore:

vi1 + vi2 >

n∑
i=1

ωi. (4)

Suppose, by contradiction, that the above inequality is not respected then we

have either v
(n+1)
i1

≤ 0 or v
(n+1)
i2

≤ 0.
Now, since x ∈ Sn, Lemma 5 implies that 0 ≤ 〈x,v〉 ≤

∑n
i=0 ωi for all x ∈ Sn.

On the other hand, the point x+ ei + ej is such that

〈x+ ei + ej ,v〉 = 〈x,v〉+ vi + vj >

n∑
i=1

ωi,

which completes the proof. ut

Lemma 8. Let w ∈ L(Sn), there exists a constant γw such that for all pairs of
points x, y ∈ Sn with πSn(x, y) = w, we have | 〈x,v〉 − 〈y,v〉 | = γw.

Proof. Lemma 7 implies that the sign of two consecutive steps coded by different
letters must have different signs.

On the other hand, if wk = wk+1 then we must have wk = i1 and this time
the sign may not change since, in a simple path, a movement ei1 may not be
followed by a movement −ei1 .

Finally, the above argumentation states that the sign of each step of a path
in Sn is completely determined by the sign of the first step. ut
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A consequence of the previous lemma is that in Sn, the word that codes the
path from 0 to Hn does not appear anywhere else.

Lemma 9. For all x, y ∈ Sn, we have

πSn(x, y) = πSn(0, Hn)⇒ {x, y} = {0, Hn}.

Proof. By construction, 〈0,v〉 is minimal and 〈Hn,v〉 is maximal among all
points of Sn. The result is direct from Lemma 8 and Lemma 6 (i) and (ii). ut

The point Hn is the key to understand the language L(Sn). This point plays
a crucial role because it can be seen as the gateway between Sn \Sn−1 and Sn−1.
We show that Hn is the only point of Sn \ Sn−1 that is adjacent to a point of
Sn−1.

Lemma 10. For all n ≥ 1, there exist a point x ∈ Sn−1 such that Hn−x = eδn .

Proof. Let (qj)j be the ordered sequence of the positions of all occurrences of
the letter δn in ∆ and let k be such that qk = n. That is, for each i from 1 to n,
there exists j with 1 ≤ j ≤ k such that qj = i if and only if δi = δn.

We build three words we, wx, wh ∈ {0, 1}n. First, consider the word 1q1 , by
Theorem 4 we have ψ(1q1) = eδn . If we replace the last occurrence of the letter
1 in 1q1 with 0 1q2−q1 then, again by Theorem 4, we have ψ(1q1−1 0 1q2−q1) =
eδn . By iterating this operation k − 1 times, we obtain a word we of length
n, as shown below, such that ψ(we) = eδn . Let wx be the word obtained by
applying the morphism that maps 0 to 1 and 1 to 0 to the word we so that
wx = 0q1−1 1 0q2−q1−1 1 · · · and finally, let wh = 1n.

1 2 3 · · · q1 · · · q2 · · · qk
we = 1 1 1 11 · · · 11 0 11 · · · 11 0 11 · · · 11 1
wx = 0 0 0 00 · · · 00 1 00 · · · 00 1 00 · · · 00 0
wh = 1 1 1 11 · · · 11 1 11 · · · 11 1 11 · · · 11 1

Let x = ψ(wx), we conclude by Lemma 5 that x ∈ Sn−1 and x+ eδn = Hn. ut

Lemma 11. The word πSn(0, Hn) is a palindrome.

Proof. Let w = w1 · · ·wk = πSn(0, Hn), let p = [p0, p1, . . . , pk] = PSn(0, Hn) and
for each letter wi, let εi ∈ {−1, 1} be such that pi − pi−1 = εiewi .

We build a path p′ = [p′0, p
′
1, . . . , p

′
k] from Hn to 0 that is coded by the same

word w then, since Sn is a tree we conclude that p′ must be p read backwards
and that w is a palindrome.

Let p′0 = Hn, and let p′1 = p′0 − ε1ew1 . We need to show that p′1 ∈ Sn. By
construction, Sn is invariant by symXn so that p′1 ∈ Sn ⇐⇒ symXn(p′1) ∈ Sn.
We have:

symXn(p′1) = symXn(Hn−ε1ew1) = 2Xn−Hn+ε1ew1 = symXn(Hn)+ε1ew1 = p1.

Note that the last equality is obtained by Lemma 6 (iii). By doing the same for
each p′i with i from 2 to k we obtain the desired path p′ from Hn to 0 which
concludes this proof. ut
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The following technical lemma shows that PSn(0, Hn) is an obligatory passage
for many paths in Sn.

Lemma 12. For all n ≥ 1, given x ∈ Sn \ Sn−1 and y ∈ Sn−1 \ symXn(Sn−1),
the path PSn(x, y) passes by 0 and Hn.

Proof. First we show that the sets Sn \ Sn−1 and Sn−1 \ symXn(Sn−1) are con-

nected. By the construction of Sn, we have s
(δn)
n = symXn(Sn−1). Theorem 1

(ii) states that each s
(i)
n−1 is connected and adjacent to 0 so that Sn−1 \ s(i)n−1 is

connected. Note that 0 6∈ s(i)n−1 for all i since otherwise they would be pairwise
adjacent. Then, also by the construction of Sn, we have

Sn \ Sn−1, =
(
Sn−1 ∪ symXn(Sn−1)

)
\ Sn−1,

= symXn(Sn−1) \ Sn−1,
= symXn

(
Sn−1 \ symXn(Sn−1)

)
,

= symXn

(
Sn−1 \ s(i)n−1

)
.

Note that the third equality uses the fact that symXn is an involution. It is then
obvious that both set Sn \ Sn−1 and Sn−1 \ symXn(Sn−1) are connected.

By contradiction, suppose that there exists a path px from x to y that does
not passes by Hn. Lemma 10 shows that Hn is adjacent to a point of Sn−1. Since
Sn−1 is a tree, there exist a path ph from Hn to y such that every points in this
path, except Hn, is in Sn−1. Since Sn \ Sn−1 is connected there exists a path p
from x to Hn that contains no points of Sn−1. The paths px, ph and p form a
non-trivial loop which is impossible since Sn is a tree. We have shown that Hn

must be in PSn(x, y). The fact that 0 ∈ PSn(x, y) is shown similarly. ut

4.1 A bijection using palindromic closure

We now define a bijection from the points of Sn to the set of its palindromes.
First we need the notion of palindromic closure of words which was introduced
by de Luca [dL97] for the study of Sturmian words.

Definition 13. Given a word w, its palindromic closure w+ is the shortest
palindrome such that w is a prefix of w+.

Let lps(w) denote the longest palindromic suffix of the word w. It is well
know that w+ = u · lps(w) · ũ where u is such that w = u · lps(w) and ũ is the
word u read backwards.

Definition 14. Let Φ : Sn → Pal
x 7→ πSn(x, 0)+

Lemma 15. For all x ∈ Sn, there exists y ∈ Sn such that πSn(x, y) = Φ(x).
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Proof. Without loss of generality, suppose that n is minimal in the sense that
x 6∈ Sn−1. Let u = πSn(x,Hn) and v = π(Hn, 0). By Lemma 12 we have
πSn(x, 0) = uv. We begin by showing that v = lps(uv). Lemma 11 ensure that v
is a palindrome while Lemma 9 and properties (i) and (ii) of Lemma 6 ensure
that word v may not be read at any other place in Sn. Since a palindromic
suffix that is not the longest one must appear at least twice, we conclude that
v = lps(uv).

Let p = [p0, p1, . . . , pk] = PSn(x,Hn). Lemma 12 implies that pi ∈ Sn \ Sn−1
for i from 0 to k. As a consequence, the path p′ = [symXn(pk), . . . , symXn(p0)]
is a path in Sn−1 which is coded by the word ũ. Finally, since pk = Hn, we have
that p′ starts at 0 which concludes this proof. ut

We complete the proof of Theorem 2 by showing that Φ is a bijection.

Lemma 16. For each p ∈ Pal(Sn) there is a unique x ∈ Sn such that Φ(x) = p.

Proof. Let m ≤ n be the smallest integer such that p ∈ Pal(Sm). First we
consider the case where p is the empty word, then x = 0 is the only point such
that Φ(x) = p. Otherwise, let p be such that |p| ≥ 1, then we have that m ≥ 1.
The minimality of m forces that for all x, y ∈ Snp such πSm(x, y) = p, then x
and y cannot both be in Sm−1 since otherwise we would have p ∈ Pal(Sm−1).
Similarly, for the same reason x and y cannot both be in symXm−1

(Sm−1).
Without loss of generality, suppose that x ∈ symXm−1

(Sm−1) \ Sm−1 and
y ∈ Sm−1 \ symXm−1(Sm−1).

By Lemma 12 we have that p = uvw where v = πSm(0, Hm). We have already
seen that πSm(0, Hm) appears only once in Sm, this implies that v must be in
the center of p since otherwise it would be repeated. The palindrome p can be
written p = uvũ.

Now, by contradiction, suppose there are two points x and x′ in Sm \ Sm−1
such that wSm(x,Hn) = wSm(x′, Hn). Let p = [p0, p1, . . . , pk] = PSm(Hn, x),
there exist ` with 1 ≤ ` ≤ k such that PSm(Hn, x

′) = [p0, p1, . . . , p`−1, p
′
`, . . . , pk]

with p` 6= p′`. Since both paths are coded by the same word, we have

p` − p`−1 = −(p′` − p`−1) = ±eu`+1
.

Let z be the point before p`−1 in the path PSm(0, x) (which is p`−2 if ` ≥ 2).
Suppose that p`−1−z = ei for some i ∈ D (the other possibility being p`−1−z =
−ei which is similar). If i = u` then one of the paths PSm(0, x) or PSm(0, x′)
makes a movement back and forth and this is impossible in a simple path. We are
left to consider the case i 6= u`, in this case we have that either p` = z+ ei + eu`
or p′` = z + ei + eu` but both cases are impossible according to Lemma 7. ut

5 Conclusion

We have considered a construction of discrete hyperplanes guided by the fully
subtractive multidimensional continued fraction algorithm. This specific con-
struction builds finite sets with a tree structure which, for well chosen normal



12 Domenjoud, Provençal, Vuillon

vectors, covers the whole discrete plane. We have provided a complete proof that
the number of palindromes in the language of these trees is equal to its number
of vertices. This results generalizes the one by Droubay, Justin and Pirillo who
showed that the number of palindromes in a finite Sturmian word is equal to its
length plus one. This bound is known to be maximal for words [DJP01,BHNR04].

b a a

b

a b

Fig. 4. A tree T with vert(T ) = 7 vertices and |Pal(T )| = 8.

It is worth mentioning that unlike linear words, trees may contain more
palindromes than the number of letters plus one which correspond to the number
of vertices in the tree. Figure 4 illustrates a tree T for which |Pal(T )| > |vert(T )|.
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