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Abstract

For discrete sets coded by the Freeman chain describing their contour, several
linear algorithms have been designed for determining their shape properties.
Most of them are based on the assumption that the boundary word forms a
closed and non-intersecting discrete curve. In this article, we provide a linear
time and space algorithm for deciding whether a path on a square lattice inter-
sects itself. forms the contour of a discrete figure. This is achieved by adding
a radix tree structure over a quadtree, where nodes represents grid points, en-
riched with neighborhood links that are essential for obtaining linearity. Due
to its simplicity, this algorithm has many applications and, as an illustrative
example, we use it for determining efficiently a solution to the more general
problem of multiple paths intersection.

Keywords: Freeman code, lattice paths, self-intersection, radix tree, discrete
figures, data structure.

1. Introduction

Many problems in discrete geometry involve the analysis of the contour of
discrete sets. A convenient way to represent them is to use the well-known
Freeman chain code [1, 2] which encodes the contour by a word w on the four
letter alphabet Σ = {a, b, a, b}, corresponding to the unit displacements in the
four directions (right, up, left, down) on a square grid. Among the many prob-
lems that have been considered in the literature, we mention : computations of
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statistics such as area, moment of inertia [3, 4], digital convexity [5, 6, 7], and
tiling of the plane by translation [8, 9]. All of the above mentioned problems
are solved by using algorithms that are linear in the length of the contour word,
but often it is assumed that the path encoded by this word does not intersect
itself. While it is easy to check that a word encodes a closed path (by checking
that the word contains as many a as a, and as many b as b), checking that it
does not intersect itself requires more work. The problem amounts to check if
a grid point is visited twice. Of course, one might easily provide an O(n log n)
algorithm where sorting is involved, or use hash tables providing a linear time
algorithm on average but not in worst case.

The goal of this paper is to remove this major drawback by providing a
linear time and space algorithm in the worst case checking if a path encoded
by a word visits any of the grid points twice. Section 2 provides the basic
definitions and notation used in this paper. It also contains the description of
the data structures used in our algorithm: it is based on a quadtree structure
[10], used in a novel way for describing points in the plane, combined with a radix
tree (see for instance [11]) structure for the labels. In Section 3 the algorithm is
described in details. The time and space complexity of the algorithm is carried
out in Section 4, followed by a discussion on complexity issues, with respect to
the size of numbers and bit operations involved. In Section 5 we consider the
problem of multiple paths intersection, and finally, we provide a list of possible
applications where the algorithm is useful and essential.

2. Preliminaries

A word w is a finite sequence of letters w1w2 · · ·wn on a finite alphabet Σ,
that is a function w : [1..n] −→ Σ, and |w| = n is its length. Therefore, the
ith letter of a word w is denoted wi, and sometimes w[i] when we emphasize
the algorithmic point of view. The empty word is denoted ε. The set of words
of length n is denoted Σn, that of length at most n is Σ≤n, and the set of all
finite words is Σ∗, the free monoid on Σ. From now on, the alphabet is fixed
to Σ = {a, b, a, b}.

To any word w ∈ Σ∗ is associated a vector

a

b

a a a b

b

b

a a

a

Figure 1: w = aaababbaaba.

−→w by the morphism −→ : Σ∗ −→ Z × Z defined
on the elementary translation −→ε = (ε1, ε2) cor-
responding to each letter ε ∈ Σ:
−→a = (1, 0),

−→
a = (−1, 0),

−→
b = (0, 1),

−→
b = (0,−1),

and such that −−→u · v = −→u +−→v . The set of elementary translations allows to draw
each word as a 4-connected path in the plane starting from the origin, going
right for a letter a, left for a letter a, up for a letter b and down for a letter b
(Figure 1). This coding proved to be very convenient for encoding the boundary
of discrete sets and is well known in discrete geometry as the Freeman chain
code [1, 2].
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It has been extensively used in many applications and allowed the design of
elegant and efficient algorithms for describing geometric properties.

The underlying principle of our algorithm is to build a graph whose nodes
represent points of the plane. For that purpose, the plane is partitioned as in
Figure 2, where the point (2, 1) is outlined with its four sons (solid arrows) and
its four neighbors (dashed arrows). The sons of a node are grouped in grey zones,
while dashed lines separate the levels of the tree. Each node has two possible
states : visited or not visited. New nodes are created while reading the word
w = w1w2 · · ·wn from left to right. For each letter wi, the node corresponding

a

b a

b

4,2 4,3

1,0

2,2

5,3

3,1

1,1

5,2

0,0

(0,0)

(1,0) (1,1)

(0,1) (1,0) (1,1)

(0,0) (0,1) (1,0) (1,1)

(0,0) (0,1) (1,0) (1,1)

(0,1)

2,12,0

level 0

level 1

level 2

level 3

Figure 2: Left: the point (2, 1) with its sons and neighbors in the radix-tree. Right: the
partition of N× N defined by the radix-tree.

to the point
−−−−→
w[1..i] is written as visited and of course, if at some point a node is

visited twice then the path is not self-avoiding and the algorithm stops. During
the process is built a graph G = (N,R, T ) where N is a set of nodes associated
to points of the plane, R and T are two distincts sets of oriented edges. The
edges in R give a quadtree structure on the nodes while the edges in T are links
from each node to its neighbors, for which we give a precise definition.

Definition 1. Given a point (x, y) ∈ Z2, we say that (x′, y′) is a neighbor of
(x, y) if there exists ε ∈ Σ such that (x′, y′) = (x, y) + ε = (x+ ε1, y + ε2).

When we want to discriminate the neighbors of a given point (x, y), for each
ε ∈ Σ, we say that (x′, y′) is an ε-neighbor of (x, y) if (x′, y′) = (x, y) + ε.

2.1. Data structure
First, we assume that the path is coded by a word w starting at the origin

(0, 0), and stays in the first quadrant N × N. This means that the coordinates
of all points are nonnegative. Subsequently, this solution is modified in order to
remove this assumption. Note that in N×N, each point has exactly four neigh-
bors with the exception of the origin (0, 0) which admits only two neighbors,
namely (0, 1) and (1, 0), and the points on the half lines (x, 0) and (0, y) with
x, y ≥ 1 which admit only three neighbors (see Figure 2).
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Let B = {0, 1} be the base for writing integers. Words in B∗ are conveniently
represented in the radix order by a complete binary tree (see for instance [11,
12]), where the level k contains all the binary words of length k, and the order
is given by the breadth-first traversal of the tree. To distinguish a natural
number x ∈ N from its representation we write x ∈ B∗. The edges are defined
inductively by the rewriting rule x −→ x · 0 + x · 1, with the convention that 0
and 1 are the labels of, respectively, the left and right edges of the node having
value x . This representation is extended to B∗ × B∗ as follows.

A quadtree with a radix tree structure for points in the integer plane. As usual,
the concatenation is extended to the cartesian product of words by setting for
(x ,y) ∈ B∗ × B∗, and (α, β) ∈ B× B

(x ,y) · (α, β) = (x · α,y · β).

Let x and y be two binary words having same length. Then the rule

(x ,y) −→ (x · 0,y · 0) + (x · 0,y · 1) + (x · 1,y · 0) + (x · 1,y · 1) (1)

defines a G′ = (N,R), sub-graph of G = (N,R, T ), such that :

(i) the root is labeled (0, 0);

(ii) each node (except the root) has four sons;

(iii) if a node is labeled (x ,y) then |x | = |y |;

(iv) edges are undirected (may be followed in both directions).

By convention, edges leading to the sons are labeled by pairs from the ordered
set {(0, 0), (0, 1), (1, 0), (1, 1)}. These labels equip the quadtree with a radix tree
structure for Equation (1) implies that (x′, y′) is a son of (x, y), if and only if

(x′, y′) = (2x+ α, 2y + β), (2)

for some (α, β) ∈ B×B. Observe that any pair (x, y) of nonnegative integers is
represented exactly once in this tree. Indeed, if |x | = |y | (by filling with zeros
at the left of the shortest one), the sequence of pairs of digits (the two digits in
first place, the two digits in second place, and so on) gives the unique path in
the tree leading to this pair. Of course the root may have up to three sons since
no edge labeled (0, 0) starts from the root.

neigbhor links. We superpose on G′ the neigbhor relation given by the edges of
T (dashed lines). More precisely, for each elementary translation ε ∈ Σ, each
node z© = (x, y) is linked to its ε-neighbor z©+ ε, when it exists. If a level k is
fixed (see Figure 2), it is easy to construct the graph

G(k) = (N (k), R(k), T (k))

such that
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(i) if (x ,y) ∈ N (k), then |x | = |y | = k;

(ii) the functions N (k) ↪→ N× N ↪→ B∗ × B∗ are injective;

(iii) R(k) is the radix-tree representation : (B<k×B<k)×(B×B) •−→ B≤k×B≤k;

(iv) the neigbhor relation is T (k) ⊆ N × (B× B)×N .

Note that the labeling in Figure 2 is superfluous: each node represents indeed
an integer unambiguously determined by the path from the root using edges in
R; similarly for the ordered edges. Moreover, if a given subset M ⊂ N × N
has to be represented, then one may trim the unnecessary nodes so that the
corresponding graph GM is not necessarily complete.

3. The Algorithm

Adding 1 to an integer x ∈ Bk is easily performed by a sequential function.
Indeed, every positive integer can be written x = u1i0j , where i ≥ 1, j ≥ 0,
with u ∈ {ε} ∪

{
Bk−i−j−1 · 0

}
. In other words, 1i is the last run of 1’s. The

piece of code for adding 1 to an integer written in base 2 is

Algorithm 1: addOne
Input: x = u1i0j

if  6= 0 then
return u1i0j−1 1;

else if u = ε then
return 10i;

else
return u0−110i;

where 0−1 means to erase a 0. Clearly, the computation time of this algorithm
is proportional to the length of the last run of 1’s. Much better is achieved
with the radix tree structure, as wee shall see. Given a node z©, its father is
denoted f( z©) and we write f(x, y) or f(x ,y) if its label is (x, y). The following
technical lemma is a direct adaptation to B∗ × B∗ of the addition above.

Lemma 1. Let G(k) be the complete graph representing B≤k × B≤k for some
k ≥ 1, ε ∈ Σ, and z© = (x , y) be a node of Nk. If one of the four conditions
holds:

(i) ε = a and x [k] = 0, (ii) ε = a and x [k] = 1,
(iii) ε = b and y [k] = 0, (iv) ε = b and y [k] = 1,

then f( z©) = f ( z©+ ε). Otherwise, f( z©) + ε = f( z©+ ε).

The process is illustrated for case (i) in Figure 3 where the nodes (10110, •) and
(10111, •) share the same father while fathers of neigbhor nodes (•, 01011) and
(•, 01011) are distinct but share the same neigbhor relation.
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1011,0101

10110,01011 10111,01011 11000,01011

1100,0101

a a

a

...

(0,1) (1,1)

(1,1) (0,1)

(0,1)

Figure 3: Computation of Lemma 1

Now, assume that the node (x ,y) exists and that its neighbor (x+ 1, y+ 0)
does not. If |x | = |y | = k, then the translation (x, y) + (1, 0) is obtained in
three steps by the following rules:

1. take the edge in R to f(x ,y) = (x [1..k − 1],y [1..k − 1]);

2. take (or create) the edge in T from f(x ,y) to z© = f(x ,y) + (1, 0);

3. take (or create) the edge in R from z© to z© · (0,y [k]).

By Lemma 1, we have z© · (0,y [k]) = (x + 1, y + 0), so that it remains to add
the neigbhor link (x ,y) a

99K (x + 1, y + 0). Then, a nonempty word w ∈ Σn is
sequentially processed to build the graph Gw, and we illustrate the algorithm
on the input word w = aabb.

• Initialization: the algorithm starts with the graph containing only the node
(0, 0) marked as visited. For convenience, the non-visited nodes (0, 1), (1, 0),
and the links from (0, 0) to its neighbors are also added. This is justified by the
fact that the algorithm applies to nonempty words. Since (0, 0) is an ancestor of
all nodes, this ensures that every node has an ancestor linked with its neighbors.
The current node is set to (0, 0) and this graph is called the initial graph Gε.

1,00,1

b a

T

R

Edges in

Visited

Non−visited

Edges in 

Current node

0,0

b a

(1,0)(0,1)

Figure 4: Initial graph Gε.

• Read w1 = a: this corresponds to the translation
(0, 0) + (1, 0). A neigbhor link labeled a starting from
(0, 0) and leading to the node (1, 0) does exist, so the
only thing to do is to follow this link and mark the node
(1, 0) as visited. The current node is now set to (1, 0),
and this new graph is called Ga.

b ab a

0,0

0,1 1,0

(0,1) (1,0)

Graph Ga.
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• Read w2 = a: this time, there is no edge in Ga labeled
a starting from (1, 0). Using the translation rules above,
we perform:

(1) go back to the father f(1, 0) = (0, 0);
(2) follow the link a to (1, 0);
(3) add node (2, 0) ∼ (1, 0) · (0, 0) = (10, 00).

Then an edge from (1, 0) to (2, 0) with label a is added
to T . Finally the node (2, 0) is marked as visited, and
becomes the current node.

b a

a

b a

0,0

1,00,1

2,0

(0,1)

(0,0)

(1,0)

Graph Gaa.

• Read w3 = b: this amounts to perform the trans-
lation (2, 0) + (0, 1). Since the edge to f(2, 0) is la-
beled by (0, 0), we know that the second coordinate
of the current node (2, 0) is even. Therefore, (2, 1)
and (2, 0) must be siblings, that is f((2, 0) + (0, 1))
= f(2, 0). What we need to do then is :
(1) go back to the father f(2, 0) = (1, 0);
(2) follow the edge b if it exists.

Since it is does not exist, it must be created to reach
the node (2, 1) ∼ (10, 01) = (1, 0) · (0, 1). Again an
edge from (2, 0) to (2, 1) with label b is added, (2, 1)
is marked as visited and is now the current node.

b a

a

b

b a

0,0

1,0

2,0

0,1

2,1

(0,1)

(0,0) (0,1)

(1,0)

Graph Gaab.

• Read w4 = b: since f((2, 1)) has no neigbhor link labeled by b, recursion is
used to find (or build if necessary) the node corresponding to its translation by
b. This leads to the creation of the node (1, 1) ∼ (0, 0) · (1, 1) marked as non-
visited. Then, the node (2, 2) ∼ (1, 1) · (0, 0) is added, marked as visited, and
becomes the current node. Note that neigbhor links between (1, 0) and (1, 1),
(2, 1) and (2, 2) are added in order to avoid searches.

b a

b

b

a

b

b a

0,0

1,0

2,0 2,1

0,1 1,11,1

2,2

(1,1)(0,1)

(0,0) (0,1) (0,0)

(1,0)

Graph Gaabb.

The algorithm readWord sequentially reads w ∈ Σ∗, builds dynamically the
graph Gw marking the corresponding node as visited, and determines if the path
coded by w is self-intersecting, i.e. if some node is visited at least twice.

7



Algorithm 2: readWord
Input: w ∈ {a, b, a, b}∗
G ← Gε;1

c©← root of G ;2

for i← 1 to |w| do3

ε← wi ;4

z©← findNeighbor(G, c©, ε) ;5

if z© is visited then6

w is self-intersecting.7

Mark z© as visited ;8

c©← z©;9

w is not self-intersecting.10

Algorithm 3: findNeighbor
Input: G = (N,R, T ); c© ∈ N ; ε ∈ {a, b, a, b};

if the link c© ε
99K z© does not exist then1

p©← f( c©);2

if f( c©+ ε) = p© then3

r©← p© ;4

else
r©← findNeighbor(G, p©, ε) ;5

z©← son of r© corresponding to c©+ε;6

Add the neigbhor link c© ε
99K z© ;7

return z©8

The algorithm findNeighbor finds, and creates if necessary, the ε-neighbor
of a given node. Thanks to Lemma 1, testing the condition on line 3 is performed
in constant time. At line 6, if the node z© does not exist, it is created. Clearly,
the time complexity of this algorithm is entirely determined by the recursive
call on line 6 since all other operations are performed in constant time. Finally,
note that after each call to findNeighbor on line 5 in Algorithm 2, there always
exist a neigbhor link c© ε

99K z©.

4. Complexity analysis

The key for analyzing the complexity of this algorithm rests on the fact that
each recursive call in Algorithm 3 requires the addition of a neigbhor link and
that a recursive call is performed on a node only when looking for one of its
sons’ neighbor. This implies that given a node z© ∈ N , when all neigbhor links
of its children have been added, there will never be another recursive call on z©.
Since a node has at most 4 sons and each of these sons has at most 2 neighbors
not sharing the same father, the number of recursive calls on a single node is
bounded by 8. It remains to show that the number of nodes in the graph is
proportional to |w|.

First, consider the visited nodes. For each letter read, exactly one node is
marked as visited, so that their number is |w|. In order to bound the number of
non-visited nodes, we need a technical lemma. Recall that the father function
f : N \{(0, 0)} −→ N extends to subsets of nodes in the usual way: for M ⊆ N ,
the fathers of M are f(M) = {f( s©) | s© ∈M}. Moreover, f can be iterated to
get fh(M), the ancestors of rank h of a subset M . Clearly, f is a contraction
since |f(M)| ≤ |M |, and there is a unique ancestor of all nodes, namely the
root.

Lemma 2. Let M = {n1, n2, n3, n4, n5} ⊂ N a set of five nodes such that
(ni, ni+1) ∈ T for i = 1, 2, 3, 4, then, |f(M)| ≤ 4.

Proof. As shown in Figure 2, the nodes sharing the same father split the plane
in 2 × 2 squares. As a consequence, at least two of the nodes n1, n2, n3, n4, n5

must share the same father, providing the bound |f(M)| ≤ 4.
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This allows to bound the number of nodes using the fact that all non-visited
nodes are ancestors of visited ones: the only exception is the initialization step
where the non-visited nodes (0, 1) and (1, 0) are created as leaves.

Lemma 3. Given a word w ∈ Σn and the graph Gw = (N,R, T ), the number
of nodes in N is in O(n).

Proof. Let Nv ⊆ N be the set of visited nodes, and h be the height of the tree
(N,R). It is clear that N =

⋃
0≤i≤h f

i(Nv), and so

|N | ≤
∑

0≤i≤h

|f i(Nv)|. (3)

By construction, The set Nv forms a sequence of nodes such that two consecutive
ones are neighbors since they correspond to the path coded by w. Thus, by
splitting this sequence in blocks of length 5, the previous lemma applies, and
we have

|f(Nv)| ≤ 4
⌈
|Nv|

5

⌉
≤ 4

5
(|Nv|+ 4). (4)

By Lemma 1, two neighbors either share the same father or have different fathers
that are neighbors, so it is for the sets f(Nv), f2(Nv), . . . , fh(Nv). Hense, by
combining inequalities (3) and (4), we obtain

|N | ≤
∑

0≤i≤h

∣∣f i(Nv)∣∣ ≤ ∑
0≤i≤h

(4
5

)i
|Nv|+

∑
0≤j≤i

(
4
5

)j
4


≤ |Nv|

(
1

1− 4
5

)
+ 4

∑
0≤i≤h

(
1

1− 4
5

)
≤ 5|Nv|+ 20h.

Since the height h of the tree (N,R) is exactly the number of bits needed to
write the coordinates of the nodes in N , h ∈ O(log n) and thus |N | ∈ O(n).

Note that the linearity constant obtained here is very large. Indeed, our
goal here is to prove the linearity of the global algorithm, and not to provide a
tight bound. With a more detailed analysis, the bound |N | ≤ 3|Nv| + 6h can
be obtained for the number of nodes [13].

5. Arbitrary paths in all four quadrants

In order to deal with paths running in all four quadrants, one may use some
technique to deal with paths having negative coordinates. For instance, since
the property of being self intersecting or not is invariant by translation, it suf-
fices to translate the path conveniently. This can be achieved by making one
pass on the word w to determine the starting node s© as follows:

(a) s©← (n, n), where n = |w|;
(b) s©← (x, y) where x and y are determined from the extremal values.
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In both cases, it takes O(n) steps to read the word and O(log n) time and space
to represent s©. Then the path is encoded in the radix-tree starting from s©.
This is simply done by creating all the ancestors of c© before the beginning of
the algorithm. This step requires an additional O(log(n)) time and space pre-
processing since the node (x, y) has exactly max (blog2(x)c, blog2(y)c) ancestors.
This solution is not satisfactory since it requires a linear preprocessing time and
making it non-suitable in the case of streaming data where no assumption on
the size or structure of the data holds.

A second and better solution consists in representing not only the first quad-
rant but the whole discrete plane Z×Z. To do so, we define an alternative initial
graph G(4)

ε illustrated in Figure 5. First, observe that the initial graph in Figure

b b

a

a

bb

a

a
0,0

0,−1

−1,0

−1,−1

(1,1)

(1,0) (0,0)

(0,1)

Figure 5: Graph G(4)
ε representing all four quadrants at once.

4 does not need to be initialized with three nodes. Indeed, it is enough to start
with the root (0, 0) initialized as its own father. We call this graph G′ε. In this
graph, the edge going from (0, 0) to itself is labeled (0, 0) so that the radix-tree
structure relation given in Equation (2) (Section 2) is satisfied:

(0, 0) = (2 ∗ 0 + 0, 2 ∗ 0 + 0).

Now, using this single node, Algorithm 3 may be used to find the neighbors
of (0, 0). For instance, consider a call to findNeighbor(G′ε, (0, 0), a). Since the
binary writing of both x and y coordinates of c© = (0, 0) ends with 0, according
to Lemma 1 we have

f ( c©+ a) = f ( c©) .

On line 4, r© = (0, 0) and on line 6, the node (1, 0) is created as the son of (0, 0)
with an edge labeled (1, 0). On line 7 the neigbhor link labeled a is added from
(0, 0) to (1, 0).

The same idea is used to represent any quadrant of the discrete plane Z×Z.
It suffices to initialize a root per quadrant and use the two’s complement for
the binary representation of the negative coordinates. Using this notation, the
representation of a negative number may start with an arbitrary number of ones
on the left, as positive numbers may be written with an arbitrary number of
zeros on the left. Consequently, each of these four roots is set as its own father
with the following labeling:
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• the root (0, 0) is its own father with label (0, 0),

• the root (−1, 0) is its own father with label (1, 0),

• the root (0,−1) is its own father with label (0, 1),

• the root (−1,−1) is its own father with label (1, 1),

The two’s complement notation ensures that Equation (2) still holds. For in-
stance, consider the four sons of node (−1, 0):

Edge’s label Son’s label
(0, 0) (−2, 0) = (2 ∗ −1 + 0, 2 ∗ 0 + 0)
(1, 0) (−1, 0) = (2 ∗ −1 + 1, 2 ∗ 0 + 0)
(0, 1) (−2, 1) = (2 ∗ −1 + 0, 2 ∗ 0 + 1)
(1, 1) (−1, 1) = (2 ∗ −1 + 1, 2 ∗ 0 + 1)

Finally, in order to allow the passage between quadrants, it suffices to add
all neigbhor links between the four roots as shown in Figure 5 and Figure 6.

b

a

bbbb bb

bbbbbb

a

a

a

a

a

a

bb

bb bb bb bb

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

b

a

a

0,−1

−1,0 1,0

1,−1

−2,0

1,−20,−2

0,0

−2,1 1,10,1−1,1

−1,−1

−2,−2 −1,−2

−2,−1

(1,1)

(1,0) (0,0)

(0,1)

(0,1)

(0,0) (1,0)

(0,0)

(1,0) (1,1)
(0,1)

(1,0)

(1,1)

(1,0)(0,0)

(1,1)

Figure 6: The first two levels of the complete graph.
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Theorem 1. Given a word w ∈ Σn, Algorithm 2 tests if the path coded by w
intersects itself with a time and space complexity of O(n).

Proof. Using the two’s complement notation, Lemma 1 still applies to nodes with
negative coordinates. Quadrant changes are ensured by the fact that neigbhor
links between roots of each subgraph are added in the initialization phase (see
Figure 5). Indeed, when a quadrant change occurs, recursion is used on extremal
nodes of the subgraph (nodes with only three neighbors in the same radix-tree)
until a neigbhor link leading to the other subgraph is reached. The first time
this process occurs, no such neigbhor link will be found until the root of the
subgraph is reached and a link leads to the appropriate subgraph’s root.

Finally, Lemma 3 also applies which proves the linearity both in time and
space of the overall algorithm.

Performance issues and comparison. Among the many ways of solving the inter-
section problem, the naive sparse matrix representation that requires an O(n2)
space and initialization time is eliminated in the first round. When efficiency is
concerned, there are two well-known approaches for solving it: one may store
the coordinates of the visited points and sort them, then check if two consecu-
tive sets of coordinates are equal or not (we call this sorting algorithm). One
may also store the sets of coordinates in an AVL-tree and check for each new set
of coordinates if it is already present or not (the AVL algorithm). Let us first
assume that the path w ∈ Σn is not self intersecting. Then the length of the
largest coordinate is O(log n). But the largest coordinate is also Ω(log n) be-
cause if the path is not self intersecting, the minimum coordinates are obtained
when the points remain in a square centered on (0, 0) with

√
n side length. Since

log(
√
n) = 1

2 log n the largest coordinate is also Ω(log n). Thus the storage of
the largest coordinate is in Θ(log n) and the whole storage costs Θ(n log n).

Sorting n ordered pairs can be done in Θ(n log n) swaps or comparisons. But
each swap or comparison costs Θ(log n) clock ticks. Then the whole computa-
tion time is Θ(n log2(n)). In our algorithm, the storage cost and computation
time are both Θ(k) where k is the index of the second occurrence of the point
appearing at least twice in the path or the path length if it is not self inter-
secting. Unlike the sorting algorithm, there is no need to store the whole path:
the computation is performed dynamically. With our algorithm, storing the
necessary data costs, both on average and in worst case, O(k) if k can be stored
in a machine word and O(k log k) otherwise. Similarly for the time complexity.

We summarize :

Algorithm Unified Cost RAM model General Case
Time Space Time Space

Sorting n log n n n log2 n n log n
AVL tree k log k k k log2 k k log k

Our k k k log k k log k
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Consider the simpler problem of checking if a path is closed, that is if for each
ε ∈ Σ we have |w|ε = |w|ε̄. The cost of storing the number |w|ε of occurrences
of each elementary step is in O(1) if each of these numbers can be stored in a
single machine word, or in O(log(nε)) otherwise. Increasing or decreasing the
number |w|ε by 1 costs O(1) on average in both cases, and at worst O(1) for
the first case and O(log n) otherwise. The total time is hence O(n) in the first
case, and O(n log n) otherwise.

Numerical results. Our algorithms were implemented in C++ and tested on
numerous examples.

The results achieved for instance with wn = anbn reveal a smaller linearity
constant than the constant provided in the proof of Lemma 3, and confirms
their efficiency.

Figure 7: Planar representation of the visited nodes and non-visited nodes. Left: with input

word a30b60a40b
11
a30ba15b

10
. Right: with input word a35b35a70b

70
a70.

The radix-tree built for each word corresponds, as shown in Figure 2, to
points in the discrete plane Z × Z. We illustrate in Figure 7 two examples of
nodes represented in the radix-tree.
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6. Multiple paths intersection

A generalization of the self-intersecting path problem is the detection of
multiple paths intersection. Given a set S = {(wk, pk) | 1 ≤ k ≤ n} where
wk ∈ {a, b, a, b}∗ and pi =∈ Z2 for all k, does there exist i, j, u, v with i 6= j or
|u| 6= |v| such that u is a prefix of wi, v is a prefix of wj and pi + ~u = pj + ~v.
In other words, if one draws the path coded by w1 starting from the point p1,
the path coded by w2 starting from p2 and so on, do these paths intersect each
other?

As mentioned at the beginning of section 5, a path may be represented
starting from any point p ∈ Z2. Consider (x ,y) ∈ B∗ × B∗ the binary writing
of the coordinates of p (using the two’s complementary for negative numbers).
Note that x and y are supposed to have the same length since zeros can be
added to the left of a positive number’s writing while in the case of a negative
number, ones can be added to the left without altering its value.

Starting from the graph G(4)
ε , consider the root of the subgraph representing

the quadrant where is located p. Reading x and y bit per bit from left to right,
for each pair of bits (x i,y i), add a son to the previous node with label (x i,y i).
The last node added is p©.

Finally, it suffices to adapt the algorithm readWord in order to start from this
node p©, which must be marked as visited at initialisation. By doing this for each
pair (wi, pi) ∈ S one obtains an algorithm for the multiple paths intersection
problem.

Let N =
∑

1≤i≤n |wi| and L =
∑

1≤i≤nb1 + log2(‖p‖∞)c, it is clear that this
solution has a time and space complexity of O(N+L). Moreover, on each node,
one may choose to replace the boolean marker visited/unvisited by a number
on blog(n)c bits and identify for which of the n paths each node is visited, 0
being the marker for non-visited nodes. Doing so, one is able to identify which
pairs paths intersects each others. Of course the time and space complexity of
the algorithm is increased to O ((N + L)b1 + log2(n)c).

7. Concluding remarks

The first advantage of our algorithm is that ordering of edges can be used
for avoiding labeling of both nodes and edges. Moreover, the neigbhor relation
T as presented is not implemented in its symmetric form. It could be easily
done since each time a neigbhor link c© ε

99K z© is added at line 7 of Algorithm 3,
we can add its symmetric link z© ε̄

99K c© at constant cost. This does not change
the overall complexity, and further analysis is required for determining if it is
worthwhile. On the other hand, our algorithm is useful for solving a series of
related problems in discrete geometry, with linear time and space complexity.
Determining if a path w crosses itself. When a node is visited twice, deciding
whether the path crosses itself or not amounts to check local conditions, de-
scribing all the possible configurations (See [8] Section 4.1).
Determining if w ∈ Σn is the Freeman chain code of a discrete figure. It suffices
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to check that the last visited node is the starting one. This does not penalize
the linear algorithms for determining, for instance, if a discrete figure is digitally
convex [7], or if it tiles the plane by translation [8]. In the case of a self inter-
secting path, it also allows the decomposition of a discrete figure in elementary
components, not necessarily disjoint.
Node multiplicity. By replacing the “visited/unvisited” labeling of nodes with
a counter (set to 0 when a node is created), the number of times a node is
visited is computed by replacing the lines 4, 5, 6 and 7 in Algorithm 1 by the
incrementation of this counter. Then, the obsolete line 10 must be removed.
Paths in higher dimension. The graph construction extends naturally to arbi-
trary d-tuples in B∗×· · ·×B∗, for representing numbers in Nd. Therefore, all the
problems cited above can be treated in a similar way, by processing sequentially
words on an alphabet Σd = {ε1, ε̄1, . . . εd, ε̄d}, of size 2d. In the multidimen-
sional case the trees used are no longer quadtrees but higher order trees, and in
particular octrees for the 3-dimensional case.

Acknowledgements. The authors are grateful to Julien Cassaigne for help-
ful comments during the MathInfo 2010 “Towards new interactions between
mathematics and computer science” conference in Marseille: the presentation
of Section 5 was substantially simplified.

Note. A preliminary version (in French) of the results presented here appears
in the doctoral thesis of Xavier Provençal [9], supported by a scholarship from
FQRNT (Québec).
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thesis, D1715, Université du Québec à Montréal, 2008.
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