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Abstract

Smooth words are in�nite words connected with the one de�ned by Kolakoski. This class is obtained
by a bijective map on the free monoid over � = f1; 2g that shows some surprising mixing properties
and also permits the construction of tilings composed of in�nite smooth words. We study the problem
of the existence of some patterns in these tilings.

1 Introduction

Following the talk given in the last year's Journ�ees Montoises [2], we analyze the existence of some patterns
in the class of what we called smooth tilings, tilings made of two basic square tiles. This class of tilings is
constructed from in�nite words belonging to a class which is invariant under the action of the run-length
encoding operator �, and is related to the Kolakoski word

K = 22112122122112112212112122112112122122112122121121122 � � �

After the pioneering work of Dekking [8, 9] who stated some mind-blowing conjectures that still remain
unsolved, some e�orts were devoted to the study of patterns in K. For instance we know from Arthuro's
paper [6] that K does contain only a �nite number of squares, implying by an inspection that K is cube-
free, a result that was extended by the second author [5] to an in�nite class K of words over �� = f1; 2g
sharing the (conjectured) same factors with K, and for which the Dekking's conjectures can be restated.

The class K with the operator � can be viewed as a dynamical system topologically conjugate to the
full shift (�! ; �), where � is the shift operator (see [14, 10]). Indeed, there is a bijection � : K �! �!

such that each tiling is completely determined by a word in �!. This point of view gives rise in a natural
way to the smooth tilings, allowing a new approach in order to understand the combinatorial structure of
words in K.

In this paper we study the two-dimensional patterns appearing in the tilings. We give �rst an
algorithm that computes the minimum distance of a pattern from the origin. Then we look at the special
case of periodic tilings and �nally to the tilings corresponding to the �xed points of the map �.

2 De�nitions and notations

Let us consider a �nite alphabet of letters �: A word is a �nite sequence of letters w : [1::n] �! � ; n 2 N;
of length n, and w[i] or wi will denote its i-th letter, depending on the context in order to avoid confusion.
The set of n-length words over � is denoted �n. By convention the empty word is denoted � and its length
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is 0: The free monoid generated by � is de�ned by �� =
S
n�0�

n. The set of right in�nite words is denoted
by �! and �1 = �� [ �!. Given a word w 2 ��; a factor f of w is a word f 2 �� satisfying

9x; y 2 ��; w = xfy:

If x = � (resp. y = � ) then f is called pre�x (resp. suÆx). The set of all factors of w is denoted by F (w);
and those of length n is Fn(w) = F (w) \ �n: Finally Pref(w) denotes the set of all pre�xes of w. The
length of a word w is jwj, and the number of occurrences of a factor f 2 �� is jwjf . Clearly, the length of
a word is given by the number of its letters, jwj =P�2� jwj�:

The mirror image eu of u = u1u2 � � �un is the word eu = un � � �u2u1: A palindrome is a word p such
that p = ep . A factor of the form uu is called a square. For a language L � �1, we denote by Pal(L)
and Squares(L), the sets, respectively, of its palindromes and square �nite factors. Over the restricted
alphabet � = f1; 2g, there is a usual length preserving morphism, the swapping of the letters, de�ned by
1 = 2 ; 2 = 1; which extends to words as follows. The complement of u = u1u2 � � �un 2 �n, is the word
u = u1 u2 u3 � � �un :

The occurrences of factors play an important role and an in�nite word w is recurrent if it satis�es the
condition

u 2 F (w) =) jwju =1 :

Clearly, every periodic word is recurrent, and there exist recurrent but non-periodic words, such as the
Thue-Morse word and the Sturmian words.

3 Run-length encoding

From here, we restrict our study to words over the alphabet � = f1; 2g: Every word w 2 �� can be uniquely
written as a product of factors as follows

w = �i1�i2�i3�i4 � � � =
Y
k2I

�ik�ik+1 ; for � 2 �; I = f1; 2; : : : ; bjwj=2cg;

where all exponents are positive except possibly the last one. We now de�ne the run-length encoding
operator � : �� �! N

� by

�(w) = i1i2i3i4 � � � =
Y
k�1

ik:

This operator admits an extension, also denoted by �, to in�nite words � : �! �! N
! :

Example.Let � = f1; 2g, and w = 1221121221. Then w = 11221221112211; and therefore

�(w) = 1221121:

Since the function � is not bijective (�(w) = �(w)), pseudo-inverse functions

��1
1 ;��1

2 : �� �! ��

are de�ned by
��1
� (u) = �u[1]�u[2]�u[3]�u[4] � � � ; for � 2 f1; 2g:

Example.Let w = 1221121. Then

��1
1 (w) = 1221121221; and ��1

2 (w) = 2112212112:

As shown for instance in [4], the operator � can be iterated and the set of smooth words is

K = fw 2 �! j 8k 2 N;�k (w) 2 �!g:
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A bijection � : K �! �! is then de�ned by

�(w)[j + 1] = �j(w)[1] for 0 � j � k;

and its inverse is inductively de�ned as follows. Let u 2 �+, then

��1(u) = w1 ;

where

wn =

�
u[juj]; if n = juj;
��1
u[n](wn+1) if 1 � n < juj:

Example.Let w = 1221121221. The successive application of � gives:

�0(w) = 1221121221

�1(w) = 1221121

�2(w) = 12211

�3(w) = 122

�4(w) = 12

�5(w) = 11

�6(w) = 2

Hence, �(w) = �0(w)[1]�1(w)[1]�2(w)[1]�3(w)[1]�4(w)[1]�5(w)[1]�6(w)[1] = 1111112: We can also
�nd inductively, starting from the bottom, that ��1(�(w)) = 1221121221:

4 Smooth tilings

As shown in [2, 3], the plane can be �lled with 1's and 2's using the inverse of the bijection �. More
precisely, a tiling of the discrete plane is a function

T : Z�Z��� �! �

de�ned as follows. The discrete plane is splitted in 2 halfplanes

(Z+�Z)
[

(Z��Z);
and the tiling is constructed as follows. Let u 2 ��, and according to the de�nition of the inverse of �, let

wn =

�
u[juj]; if n = juj;
��1
u[n](wn+1) if 1 � n < juj:

De�ne the matrix composed of the wn by

8i; 1 � i � juj; and 8j; 1 � j � jwij; Mu[i; j] = wi[j] :

Finally the tiling of the plane is obtained by constructing the matrixMu and glueing it to form the (matrix
of the) tiling

Tu[i; j] =

�
Mu[i; j] if j > 0;
Mu[i; 1� j] if j � 0;

Clearly this tiling extends to bi-in�nite words u 2 !�!, where Mu and Mu correspond respectively to the
positive and negative half planes.

Example.Let w = (1121)! = 11211121112111211121 � � � and p = (1121)4 a pre�x of w. Consider the
bi-in�nite word u = eww. The tiling is obtained by writing vertically ep p of w. First the righthand side is
�lled from the bottom. Then we write ep p to the left of p and �ll the lefthand side from the bottom.
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2 2 1 2 2 1 2 1 1 2 1 1 2 2 1 2 1 1 2 1 2 2 1 1 2 1 1 2 2 1 2 2
1 2 1 1 2 2 1 2 1 1 2 1 2 2 1 1 2 1 1 2 2 1 2 2 1 2 1 1 2 1 1 2
1 1 2 1 1 2 1 2 2 1 1 2 1 1 2 2 1 2 2 1 2 1 1 2 1 2 2 1 1 2 1 1
2 1 1 2 1 2 2 1 2 1 1 2 2 1 2 2 1 2 1 1 2 1 1 2 2 1 2 1 1 2 1 2
2 2 1 2 2 1 2 1 1 2 1 1 2 2 1 2 1 1 2 1 2 2 1 1 2 1 1 2 2 1 2 2
1 2 1 1 2 2 1 2 1 1 2 1 2 2 1 1 2 1 1 2 2 1 2 2 1 2 1 1 2 1 1 2
1 1 2 1 1 2 1 2 2 1 1 2 1 1 2 2 1 2 2 1 2 1 1 2 1 2 2 1 1 2 1 1
2 1 1 2 1 2 2 1 2 1 1 2 2 1 2 2 1 2 1 1 2 1 1 2 2 1 2 1 1 2 1 2
2 2 1 2 2 1 2 1 1 2 1 1 2 2 1 2 1 1 2 1 2 2 1 1 2 1 1 2 2 1 2 2
1 2 1 1 2 2 1 2 1 1 2 1 2 2 1 1 2 1 1 2 2 1 2 2 1 2 1 1 2 1 1 2
1 1 2 1 1 2 1 2 2 1 1 2 1 1 2 2 1 2 2 1 2 1 1 2 1 2 2 1 1 2 1 1
2 1 1 2 1 2 2 1 2 1 1 2 2 1 2 2 1 2 1 1 2 1 1 2 2 1 2 1 1 2 1 2
1 2 1 2 2 1 2 1 1 2 1 1 2 2 1 2 1 1 2 1 2 2 1 1 2 1 1 2 1 2 2 1
2 2 1 2 2 1 1 2 1 1 2 1 2 2 1 1 2 1 1 2 2 1 2 1 1 2 1 2 2 1 2 2
2 1 2 2 1 1 2 1 2 2 1 2 1 1 2 2 1 2 2 1 1 2 1 1 2 1 2 2 1 2 2 1
1 1 2 1 1 2 1 2 2 1 1 2 1 1 2 2 1 2 2 1 2 1 1 2 1 2 2 1 1 2 1 1
2 1 1 2 1 2 2 1 2 1 1 2 2 1 2 2 1 2 1 1 2 1 1 2 2 1 2 1 1 2 1 2
2 2 1 2 2 1 2 1 1 2 1 1 2 2 1 2 1 1 2 1 2 2 1 1 2 1 1 2 2 1 2 2
1 2 1 1 2 2 1 2 1 1 2 1 2 2 1 1 2 1 1 2 2 1 2 2 1 2 1 1 2 1 1 2
1 1 2 1 1 2 1 2 2 1 1 2 1 1 2 2 1 2 2 1 2 1 1 2 1 2 2 1 1 2 1 1
2 1 1 2 1 2 2 1 2 1 1 2 2 1 2 2 1 2 1 1 2 1 1 2 2 1 2 1 1 2 1 2
2 2 1 2 2 1 2 1 1 2 1 1 2 2 1 2 1 1 2 1 2 2 1 1 2 1 1 2 2 1 2 2
1 2 1 1 2 2 1 2 1 1 2 1 2 2 1 1 2 1 1 2 2 1 2 2 1 2 1 1 2 1 1 2
1 1 2 1 1 2 1 2 2 1 1 2 1 1 2 2 1 2 2 1 2 1 1 2 1 2 2 1 1 2 1 1
2 1 1 2 1 2 2 1 2 1 1 2 2 1 2 2 1 2 1 1 2 1 1 2 2 1 2

1 2 1 1 2 1 1 2 2 1 2 1 1 2 1 2 2 1 1
1 1 2 1 2 2 1 1 2 1 1 2 2

2 1 1 2 2 1 2 2
1 2 2 1 2

1 2 1 1
1 1 2

2 1

Tilings are then obtained by replacing 2 with � , and leaving 1 blank.

5 Patterns in smooth tilings

We consider �rst small patterns, and then, some properties of periodic as well as �x-point tilings are
described. By smooth pattern we mean a subset, �nite or not, of some smooth tiling.

5.1 Small patterns in smooth tilings

In order to estimate the size of the search of given patterns in in�nite smooth tilings we start with an exact
formula for the number of cube free words of length n. This gives an upper bound for the number of smooth
factors of length n. This is then applied to the n� n square patterns. Then, we make a systematic search
of small n � n smooth patterns appearing in some tilings. Finally, two-dimensional smooth palindromic
patterns are analysed and a conjecture is made concerning the non existence of such patterns in arbitrary
smooth tilings.

Bounds for the number of smooth n� n square patterns

Let F = f111; 222g be a set of forbidden patterns and let C be the set of in�nite words avoiding patterns
in F . Since every factor of a smooth word is cube free [5], we have the trivial bounds

jFn(K)j � jFn(C)j
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where K denotes the set of smooth words. We use the notation fn � cn; for sake of simplicity. Since the
number sn of smooth square patterns is fnn , we have the obvious estimate

sn � cnn:

The generating series of cn is

C(x) =
X
n�0

cnx
n =

2

1� x� x2
� 1 =

X
n�0

2 � Fib(n)xn � 1 = 1 + 2x+ 4x2 + 6x3 + 10x4 + 16x5 : : : :

Remark that, for n = 1 : : : 4, the number cn of cube free words is equal to the number fn of smooth factors,
but this is no longer true for n � 5:

n=4

n=5

n=3

n=2

n=1

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

(a) 

(b) 

(c) 

(e) 

 (d) 

Proposition 1 The number sn of smooth n� n square patterns satis�es

sn � (2 � Fib(n))n =

0@ 2p
5

 
1 +

p
5

2

!n+1

�
 
1�p5

2

!n+1
1An

�
�

2p
5

�n
 
1 +

p
5

2

!n+1

:

We also have the asymptotic value sn
cn
n

! 0; that is, the fraction of smooth n�n square patterns among the

cube free n� n square patterns tends to 0 as n goes to in�nity.

Occurrences

A problem of interest is to know whether a pattern P occurs in a smooth tiling T or not. This introduces
the notion of index of �rst occurence, denoted Imin(P; u), between the vertical axis (i.e the vertical word u)
and the �rst occurrence of the pattern if it exists. In other words, the problem can be de�ned as follows:
For a given pattern composed of n superimposed smooth factors u1; u2; : : : ; un, determine a tiling (i.e. a
word u such that the distance from u is minimal.

Example. Consider two smooth factors, u1 = 21221 and u2 = 12112. Since � is a contracting map, we
must consider 2 cases:

(a) Take �rst, if it exists, the greatest suÆx of u1 which is coded by a pre�x of u2 as shown below

   2

   1

   1    1    2    1    1    2    2    1    2

   2    1    2    1

   1    1    2    1    2    2    1

   2    1    1    2

   1    2

   1

   2

   1

   1    2

   2    1

   2

   1

   1

   2
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Then, try extend to the left and down, keeping smoothness, until a vertical word is obtained. If this
is possible a complete in�nite smooth tiling can be constructed :

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

If such a suÆx does not exist, then we consider the second case:

(b) In this case, the con�guration

u1 = k1k2 : : : kn
u2 = l1l2 : : : ln; ki; li 2 f1; 2g

does not contain a suÆx s of u1 and a pre�x p of u2, such that �(s) = p. Therefore, the only possible
con�guration is shown below,

: : :

: : :

k1 k2 kn: : :

l1 l2 ln: : :

z }| {
dmin

��1(u2)

where dmin represents the minimal distance between the factor u1 and the inverse function ��1(u2)
for which it works. Then, we have to check successively for the values dmin = 0; 1 : : : until a tiling is
obtained (if it exists).

Smooth 2 � 2 patterns

Consider �rst, the 2 � 2 patterns. Using smooth factors of length 2, and the method described above, it
can be checked that all the 2 � 2 square patterns occur in some tiling. More precisely, the index of �rst
occurrence for the 16 square patterns is shown in the following table where the �rst pattern exists for
instance in the Kolakoski tiling.

  2  1  2  2  2  2  2   0  0  0  0  0  0  0  0   1

Smooth 3 � 3 patterns

In the same way we determine the index Imin of such patterns in a tiling.All the 63 patterns are smooth
and due to this higher number we list only some of them.

0 5 2 2 5 5 2 4 6 7

0 11 3 11 4 4 3 4 5 14
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Palindromic patterns

In the case of two-dimensional palindromic patterns obtained by the stacking of palindromic smooth words,
we obtained the following results for small patterns

0 210 0 0 1 4

Moreover an extensive search based on various tilings, shows that these small smooth palindromic
patterns occur frequently. On the other hand, whether the following pattern is smooth or not is an open
problem:

If not, then the following large palindromic pattern would not occur in any tiling.

Some open problems

One basic problem is to prove that there exist smooth patterns which do not occur in any smooth tiling
and to exhibit such patterns. We observed that all the 2�2 and 3�3 smooth patterns seem to appear with
about the same frequencies. Is this true for n�n smooth patterns? What is the frequency of appearence of
a given pattern in a smooth tiling? Another problem is to estimate or �nd an exact value of the maximum
distance between two consecutive occurences of a given pattern in smooth tilings.

5.2 Periodic Tilings

We consider now periodic tilings, those corresponding to periodic words of ��. From here, we restrict our
study to quarter plane tiling constructed from u 2 �� and de�ned by

Tu[i; j] = wi[j] 8i; 1 � i � juj and 8j; 1 � j � jwij;
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where

wn =

�
u[juj]; if n = juj;
��1
u[n](wn+1) if 1 � n < juj:

This tiling can be extended to bi-in�nite words and then correspond to the positive half plane Z+�Z.

Example.The periodic word
(122)! = 122122122122 � � �

yields the periodic tiling

Let Tu be the tiling corresponding u = (p)! 2 �!. The strip of Tu is the in�nite tile determined by the jpj
consecutive lines

L1; L2; L3; : : : ; Ljpj

of Tu. Obviously, the strip of Tu is of width jpj.

Example.The strip of the periodic word (122)! = 122122122122 � � � is

1 1 2 2 1 2 2 1 1 2 1 2 2 1 2 2 1 1 2 1 1 2 1 2 2 1 1 2 1 1 2 2
2 2 1 2 2 1 1 2 1 2 2 1 2 1 1 2 2 1 2 2 1 2 1 1 2 1 2 2 1 1 2 1
2 1 2 2 1 1 2 1 1 2 2 1 2 1 1 2 1 1 2 2 1 2 2 1 1 2 1 2 2 1 2 1

One can see that a periodic tiling Tu can be constructed by translating vertically its strip. In symbol, if
STu is the strip of Tu and t = (0; jpj) is a vertical translation of jpj unities, then

Tu =
[
i2N

STut
i:

From this last construction, it is clear that each column of the tiling Tu is a periodic word of period jpj
and we have the following properties.

Observation 1 Let u = (p)! 2 �! of minimal period p and Tu the associated tiling. Then

(i) there are 2jpj di�erent columns in Tu;

(ii) each column of Tu is recurrent;
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In order to prove the �rst observation, a jpj dimensional de Bruijn graph can be associated to each periodic
tiling considering the strip of the tiling as a jpj dimensional word.

Example.The periodic word (12)! = 1212121212 � � � yields a tiling of strip

1 1 2 1 1 2 2 1 2 2 1 2 1 1 2 2 1 2 2 1 1 2 1 2 2 1 2 1 1 2
2 1 2 2 1 2 1 1 2 2 1 2 2 1 1 2 1 1 2 1 2 2 1 1 2 1 1 2 2 1

where each word of length 2 over � = f1; 2g appear as a column word. Its de Bruijn graph is

1
2

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
21

2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

 1  1

 1

 1  1

 1  1  1

 1

 1 1 1 1

 1 1 1

 1

 1  1

 1

 1

 1  1

 1

 1

 1  1

 1 1  1

 1 1

 2  2  2

 2

 2

 2  2  2

 2 2  2

 2 2

 2

 2 2

 2  2  2

 2 2

 2

 2  2

 2  2

 2

 2

 2

 2

 2 2

5.3 FixPoint tilings

The �x-points for � (see [2, 3]) are Fix(�) = fX 2 K j �(X) = Xg:

f211212212211212212112 � � � ; 212211211221221211211 � � � ; 221221121221211221221 � � � g
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The tiling associated to the �rst one is

At �rst glance, the tilings seem to be chaotic, however the distribution of the Kolakoski word's pre�xes
in the �x-point tilings shows a surprising synchronicity. The following tables list the positions of the two
longest Kolakoski pre�xes, found in tilings of size 1000� 1000, according to their length. The couple (i; j)
refer to the ith colum of the jth line.

Tilings
Pre�xe 2112� � � 2122� � � 2212� � �
K[1::149] (73,158) (73,303) (73,54) (73,199) (73,197) (73,320)

(73,527) (73,707) (73,595) (73,626) (73,347) (73,467)
(474,93) (474,138) (73,715) (474,9) (73,806) (73,895)
(474,258) (474,364) (474,154) (474,259) (474,33) (474,420)
(474,444) (474,617) (474,304) (474,424)
(474,662) (474,768) (474,530) (474,575)

(474,695) (474,788)
(474,967)
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Tilings
Pre�xe 2112� � � 2122� � � 2212� � �
K[1::255] (712,92) (712,137) (712,8) (712,153) (712,32) (712,419)

(712,257) (712,363) (712,258) (712,303)
(712,443) (712,616) (712,423) (712,529)
(712,661) (712,767) (712,574) (712,694)

(712,787) (712,966)
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